
The Reuse Cache: Downsizing the Shared Last-Level
Cache

Jorge Albericio
∗

University of Toronto
jorge@eecg.toronto.edu

Pablo Ibáñez
University of Zaragoza
imarin@unizar.es

Víctor Viñals
University of Zaragoza
victor@unizar.es

José M. Llabería
UPC Barcelona Tech

llaberia@ac.upc.edu

ABSTRACT
Over recent years, a growing body of research has shown
that a considerable portion of the shared last-level cache
(SLLC) is dead, meaning that the corresponding cache lines
are stored but they will not receive any further hits before
being replaced. Conversely, most hits observed by the SLLC
come from a small subset of already reused lines.

In this paper, we propose the reuse cache, a decoupled
tag/data SLLC which is designed to only store the data of
lines that have been reused. Thus, the size of the data array
can be dramatically reduced. Specifically, we (i) introduce
a selective data allocation policy to exploit reuse locality
and maintain reused data in the SLLC, (ii) tune the data
allocation with a suitable replacement policy and coherence
protocol, and finally, (iii) explore different ways of organizing
the data/tag arrays and study the performance sensitivity
to the size of the resulting structures.

The role of a reuse cache to maintain performance with de-
creasing sizes is investigated in the experimental part of this
work, by simulating multiprogrammed and multithreaded
workloads in an eight-core chip multiprocessor. As an ex-
ample, we show that a reuse cache with a tag array equiv-
alent to a conventional 4 MB cache and only a 1 MB data
array would perform as well as a conventional cache of 8
MB, requiring only 16.7% of the storage capacity.

Categories and Subject Descriptors
B.3.2 [Hardware]: Memory Structures—Cache Memories

General Terms
Design, Performance, Experimentation

∗
The work of the present paper was developed while the author was

a PhD student at the University of Zaragoza.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MICRO ’46, December 7-11, 2013, Davis, CA, USA.
Copyright 2013 ACM 978-1-4503-2638-4/13/12 ...$15.00.
http://dx.doi.org/10.1145/2540708.2540735

Keywords
Last-Level Cache Organization, Reuse

1. INTRODUCTION
Shared-memory chip multiprocessors (CMPs) reached high-

performance and high-throughput computing markets in the
last decade. Nowadays, they are widely accepted across all
segments of the market, from cloud servers to desktop, em-
bedded and mobile systems on a chip. Industry converts the
continuously increasing number of available transistors into
higher core counts and larger cache memories that expand
linearly with the number of cores. This trend is, however,
unlikely to continue in the future, obliging many-core sys-
tems to include lower cache-to-core ratios [21].

It is common that all the cores in a CMP share a last level
of cache memory, referred to as the shared last-level cache
(SLLC). This SLLC is required to perform two key tasks,
manage coherence and store valuable data. Regarding the
second task, the SLLC seeks to feed the misses of the private
cache levels with low latency, exploiting to the maximum the
scarce off-chip bandwidth with the external main memory.

Previous studies indicate that conventional SLLCs are
effective but inefficient because their contents are mostly
useless. In fact, a high proportion of the SLLC lines are
dead, meaning they will not be requested again before being
evicted, to the point that some lines are just used once, and
are useless during their entire stay in the SLLC [16, 17, 26].
Efficient management of SLLC contents is difficult because
temporal and spatial locality that govern private cache levels
become dissolved in the stream of references observed by the
SLLC [12, 26]. A great deal of research has addressed the
problem from several angles, with the aim of improving the
SLLC hit ratio. The suggestions proposed include decreas-
ing the number of conflicts in the SLLC sets [27], improving
replacement decisions [11], and prefetching useful data [4],
among other techniques.

Despite these efforts, state of the art replacement policies
only achieve average improvements within 5% of a commer-
cial algorithm such as NRU, even using a set of benchmarks
whose performance is sensitive to replacement [12, 1]. More-
over, the fraction of live lines in the SLLC does not increase
much with any of the aforementioned techniques. Such facts
encouraged us to explore an alternative approach: to develop
a solution with which the SLLC area is drastically reduced
without compromising performance. A solution of this sort
would be very interesting, since the saved area could help to

310

0.25

0.5

0.75

LR
U

0.25

0.5

0.75

D
R

R
IP

0 1000 2000 3000 4000 5000 6000
time (x100K cycles)

0.25

0.5

0.75

N
R

R

(a) Changes in the fraction of live lines over time

0!

2!

4!

6!

8!

10!

12!

0%!
5%!

10%!
15%!
20%!
25%!
30%!
35%!
40%!
45%!
50%!

1! 2! 3! 4! 5! 6! 7! 8! 9! 10! 11! 12! 13! 14! 15!

pe
rc

en
ta

ge
 o

f t
ot

al
 h

its
!

Groups with equal number of lines!

Av
er

ag
e

nu
m

be
r o

f h
its

 p
er

 li
ne
!

(b) Distribution of hits among all lines loaded (or reloaded) into the LRU SLLC
during their stay. Each group represents 0.5% of the loaded lines

Figure 1: Line usage patterns in a conventional 8 MB SLLC during a simulation period of 700 MCycles

cut manufacturing costs, reduce power consumption, and/or
decrease the cache-to-core ratio, allowing the core count to
be increased with the same die area.

A conventional SLLC has a non-selective allocation pol-
icy, meaning that any request coming from the lower levels
always ends up storing the corresponding line in the SLLC
(either right after the miss processing in an inclusive SLLC
or in a deferred way in an exclusive one). Non-selective
allocation is a good choice if temporal locality holds. We
assume that recently referenced lines are likely to appear in
the near future, so we want them to be kept in the cache.
However, recent studies point out that the reference stream
entered in the SLLC does not always exhibit temporal lo-
cality and, consequently, these authors propose varying the
precise insertion point in the LRU stack [11, 12].

Other recent studies have shown that is not a good idea
to base SLLC replacement on exploiting only temporal lo-
cality, given that local caches are already doing that job [10,
12, 5]. In fact, a recent study explicitly notes that the refer-
ence stream entered in the SLLC has reuse locality instead
of temporal locality [1]. In short, the term reuse locality
describes the property that the second reference to a line is
a good indicator of forthcoming reuse, and recently reused
lines are more valuable than other lines reused a long time
ago.

In this paper, we introduce the reuse cache, a structure
and a set of policies tuned to process request streams with
reuse locality. A key design decision is to provide a selec-
tive allocation policy leveraging reuse locality. Specifically,
only data that has already shown reuse will be kept in the
SLLC data array, allowing drastic size reductions without
performance loss.

A reuse cache decouples tag and data arrays, breaking
the conventional 1:1 mapping. Besides its obvious functions,
the tag array in a reuse cache supports reuse detection and
inclusion maintenance. The data array may have far fewer
entries than the tag array, because it only contains reused
data.

We evaluate our proposal by simulating an eight-core CMP
system which runs a rich set of multiprogrammed and multi-
threaded workloads. The reuse cache succeeds in identifying
the small fraction of lines that receive most hits, and lever-
aging its decoupled tag/data design, the size of the data
array can be dramatically shrunk without having a negative
impact on system performance. Specifically, a reuse cache
matches an 8 MB conventional cache in performance with

tag and data arrays half and one-eighth the number of en-
tries, respectively (a saving of 83.1% in storage capacity).

The paper is structured as follows. Section 2 provides ex-
perimental evidence of the small fraction of live lines in the
SLLC and the concentration of hits in the reused lines. Sec-
tion 3 explains the organization of the reuse cache, replace-
ment algorithms and coherence protocol modifications, giv-
ing implementation details and costs. Section 4 presents the
experimental methodology and the baseline system, while
Section 5 presents the experiments and discusses the results,
comparing them with two state of the art proposals, namely,
dynamic re-reference interval prediction (DRRIP) [12] and
non-inclusive cache, inclusive directory architecture (NCID)
[35]. Section 6 summarizes related work and, finally, conclu-
sions are drawn in Section 7.

2. MOTIVATION
In this section, we analyze the behavior of a represen-

tative multiprogrammed SPEC CPU workload1 running in
an eight-core chip with a memory hierarchy made up of an
SLLC and private caches; see the simulation details in Sec-
tion 4. We are going to highlight two effects, namely, i) most
lines in the SLLC are dead, meaning they will not receive
any further hits; and ii) most SLLC hits come from a small
subset of lines (among all the lines the SLLC loads).

2.1 The fraction of live SLLC lines is small
Figure 1a shows the fraction of the SLLC lines that are

live over the course of the execution of the example work-
load. We say that a line is live in a particular moment if
it will receive some additional access during the rest of its
stay in the cache. We simulated 700 M cycles and took a
sample every 100 K cycles. In each sample, we compute the
”instantaneous” fraction of live lines.

As we can see the fraction of live lines varies between
5.7 and 29.8% when LRU replacement is applied. On aver-
age, only 17.4% of the SLLC lines are live. Using Dynamic
Re-Reference Interval Prediction (DRRIP)[12] and the Not
Recently Reused (NRR)[1] algorithm, two state of the art re-
placement policies, this average increases to 34.8 and 37.9%
respectively. The averages for the 100 workloads used in the
experiments in Section 5 are 16.2, 35.9 and 40.0% for LRU,
DRRIP and NRR respectively. In other words, 83.8% of the

1
This example workload is composed of the following applications:

gcc, mcf, povray, leslie3d, h264ref, lbm, namd, and gcc

311

lines stored in the SLLC do not provide any benefit, and
replacement algorithms proposed in the literature are only
able to reduce this percentage to about 64.9%. Hence, it
can be reasonably argued that it should be possible to save
the extra space and energy associated with those dead lines
without compromising performance.

2.2 Hits come from a small subset of lines
Figure 1b shows the contribution to the total number of

hits of a given group of lines during their stay in the SLLC
over the course of the execution of the example workload.
In order to obtain this distribution, we ran the simulation
and, just after each line is evicted from the SLLC, inserted
in a sorted list the number of hits the line received while in
the cache (0 hits, 1 hit, 2 hits, etc.). If a line was loaded
multiple times, i.e., it had multiple generations [14], its hit
count appeared multiple times in the sorted list.

Once the simulation ends, we broke the sorted list into
200 groups of equal size. Thus, each group represents 0.5%
of the loaded lines. The first bar to the left in Figure 1b
represents the percentage of hits received by the group of
line generations at the top of the list (47% of hits in 0.5% of
lines). Alternatively, we can read the average number of hits
per line generation from this group (11.5) from the vertical
axis on the right.

As we can see, only 5% of all the loaded lines are useful,
receiving one or more hits. Beyond that, the remaining 95%
loaded lines are useless, because they will not receive any
hits during their lifetime. Moreover, hits are concentrated
in a very small portion of the useful lines. Specifically, 0.5%
of all the loaded lines account for 47% of the SLLC hits.

In summary, the reference stream forwarded to the SLLC
certainly exhibits reuse locality: very few lines are useful (re-
ceiving some hits), and once a line has received a hit, it has a
high probability of receiving additional hits. Consequently,
we propose to store in the SLLC only the lines showing reuse.
Since these lines are a small portion of the total lines and
receive most of the hits, we should be able to greatly reduce
the cache size without impairing performance.

3. THE REUSE CACHE DESIGN
Starting from a conventional cache, we set out to design

a reuse cache by reducing the data array and storing only
the lines showing reuse. Regarding the tag array, it should
reflect at least the lines retained in the tiny data array. In
addition, the tag array should also record the lines present
in the private levels (directory inclusion), so that coherence
management is simplified [2, 10, 35]. Finally, in order to
detect reuse, the tag array should maintain some usage his-
tory of recently used lines, lines that may not be in the data
array or in the private levels.

Having more entries in the tag array than in the data
array, a natural solution is to decouple them. The coherence
protocol of the reuse cache has to be modified in order to
reflect new coherence states (a line tag is in the tag array,
but the corresponding data line is not in the data array).

On a miss in the tag array, the line is read from main
memory and loaded into the corresponding private cache.
Only the tag is loaded into the SLLC, with no associated
data. On a hit in the tag array with no associated data, a
reuse is detected. Thus, the line is read again from main
memory and loaded in the private cache and SLLC data
array at the same time. When a line is evicted from the

=

=

hit?

tag

Way-0 Way-n

set #tag
physical address

byte

hit?

set

Way-0 Way-n

statetag fwd. pointer validrev. pointer repl. bit

Data

TAG ARRAY DATA ARRAY

Figure 2: Reuse cache overview

data array, its tag remains in the tag array. A further access
to that line hitting in the tag array will be taken as a reuse
hint and then the line will be loaded in the data array. In
order to take advantage of reuse locality, replacement in the
data array is based on recency. On the other hand, tag
replacement is designed to protect both private cache lines
and recently reused lines.

In the following sub-sections, we discuss the reuse cache
organization and replacement policies, present an example
coherence protocol, and discuss the hardware costs of our
proposal.

3.1 Organization
The reuse cache breaks the implicit one-to-one mapping

between tag and data found in conventional caches.
Other authors have proposed decoupling tag and data ar-

rays with them having the same [6] or different [30, 28, 27,
35] number of entries. Decoupling with the same number
of entries allows the two arrays to be shaped differently, for
instance enabling the concept of distance associativity [6].
In any case, all proposals rely on relating the entries of the
two arrays by means of pointers. Some proposals need only
forward pointers from the tag array to the corresponding
data lines, if any [28, 6, 35], and others need only a re-
verse pointer, which links each data line to the correspond-
ing tag [30], while in some cases both kinds of pointers are
required [27].

An alternative organization, avoiding the need for point-
ers, uses the same number of sets in tag and data arrays
and associates data to only a few tags for each set. The as-
sociation between tags and data is fixed (for instance, only
the tag in way 0 has associated data). This organization
involves moving tags between the ways with and without
data [35, 20].

In the reuse cache, a tag may have an associated data line
or not. A particular coherence state identifies every possible
situation, and a forward pointer and a reverse pointer relate
the entries of the two arrays to one another. Figure 2 shows
an overview of the reuse cache organization.

As the forward pointer indicates the exact position of a
line in the data array, no additional lookup in the data ar-
ray is required. Thus, the data array can be as associative
as desired. The data array associativity is only related to
replacement in the data array. By increasing associativity,
the replacement algorithm has more options to choose a vic-

312

tim. The data array associativity also has a small impact
on the hardware cost. By increasing associativity, the size
of the pointers stored in tag and data arrays also increases.
Section 3.3 details the data array organization, while Sec-
tions 3.5 and 3.6 analyze implementation issues, and Sec-
tion 5.1 analyzes the influence of the data array associativ-
ity on the reuse cache size and performance, concluding that
the impact of data array associativity is very limited both
on cost and performance.

3.2 Tag Replacement Policy
A key benefit of decoupling is to specialize replacement,

that is, to order and evict tags and data separately on the
basis of their different roles. Any replacement policy may
work in the reuse cache tag array if it fosters the presence of
reused lines and takes into account inclusion and the trade-
offs it brings [10]. In this paper, we adopt a not recently
reused (NRR) [1] replacement policy, which is based on the
not recently used (NRU) algorithm [24]. Both have the same
implementation cost, one bit per line. In NRR, the Non-
Recently Reused (NRR) bit, distinguishes recently reused
lines from not recently reused ones. When a line is loaded
into the SLLC due to a miss, its NRR bit is set (it has not
been recently reused); when there is a hit (a reuse), the NRR
bit is unset. NRR uses the full-map directory bits to dis-
tinguish between lines present or not in the private caches.
Victim lines are randomly selected among lines having the
NRR-bit set and not included in the private caches.

3.3 Data array: organization and replacement
policy

The data array associativity is only related to the replace-
ment in the data array. An associative search in the data
array is never necessary because the forward pointer in the
tag array indicates the set and way in the data array.

We assume a number of sets in the tag array greater than
or equal to that in the data array, using in both arrays the
least significant bits of the line address as set index. There-
fore, a forward pointer only has to indicate the way of the
data array where the line is, while a reverse pointer has to
show the way of the tag array as well as the bits of the tag
array index not included in the data array index (a number
of bits equal to log2 the number of tag array sets - log2 the
number of data array sets). For instance, a data array with
only one set (fully associative) requires log2(the number of
data array entries) bits for each forward pointer, and reverse
pointers require log2(the number of tag array entries) bits.

Only reused lines are allocated in the data array. Thus,
in order to exploit reuse locality, replacement should rely on
recency. Given our low-cost design goal, we use NRU as the
data array replacement algorithm. However, NRU perfor-
mance decreases for high associativities. Thus, for the fully
associative case, we have tested a suitable alternative, the
low-cost Clock algorithm introduced in [7]. The implemen-
tation cost of both NRU and Clock is one bit per line.

When evicting a data line, the corresponding forward poin-
ter in the tag array has to be invalidated. The corresponding
tag array entry is located by following the reverse pointer of
the just invalidated line (Figure 2).

3.4 TO-MSI: an example coherence protocol
Conventional coherence protocols assume that each line

present in a cache has an entry in both the tag and data

I TO

S
GETS

M

GETX
UPG

GETX

DataRepl

Stable states

New stable states
Transitions inserting a line into the data array

Transitions not affecting the data array
*A tag replacement always finishes at I state

Transitions removing a line from the data array

DataRepl
GETS
GETX

GETX
GETS
PUTX

GETS
PUTS

Tag-only state Tag+data states

UPG
PUTX
PUTS

Figure 3: Functional description of the TO-MSI example
coherence protocol

arrays. However, a reuse cache needs a coherence protocol
able to deal with lines that have entries in the tag array but
not in the data array.

Figure 3 outlines an example coherence protocol based on
the MSI protocol2[8], which is able to work with decoupled
tag and data arrays. Table 1 explains the states and events
of the protocol. In this description, neither replacement nor
external requests are represented. In every state except I,
private caches may or may not have copies of the line. This
information is stored in a full-map directory by using a pres-
ence bit vector.

Two different groups of states can be considered: tag+data
states that contain lines in the data array; and tag-only, a
single state in this simplified version of the protocol, that
contains lines that are not present in the data array.

Transitions between the two groups always imply getting
lines in or out of the data array.

1) From tag-only to tag+data. When the first SLLC hit
(reuse) is observed the state changes from tag-only to a state
of the tag+data group. These transitions are represented by
dash-dotted arrows in the figure and are caused by GETS
and GETX events when the state of the line is TO.

2) From tag+data to tag-only. When a line is evicted from
the data array the state changes from the tag+data group
to tag-only. Replacing a line in the data array requires the
protocol to record that the tag no longer has associated data.
The dashed arrows labeled with the DataRepl event, coming
out of M and S, represent these state transitions.

3.5 Hardware Cost
In this section, we calculate the reduction in the total

number of bits required by a reuse cache with respect to a
conventional cache, by taking into account both the tag/data
array reduction and the increase due to the forward and re-
verse decoupling pointers. As an example, for an eight-core

2
For the sake of clarity, a simple protocol is shown here. In our eval-

uation, we consider a MSI-MOSI protocol with seven stable states.
This protocol allows interconnection between several CMPs. The
reuse cache needs three additional stable states to track the tag-only
situations.

313

Name Cache Memory Data

I Invalid or not present - No
S Unmodified up-to-date Yes

M Modified stale Yes
TO Only tag, no data up-to-date or stale No

(a) States of TO-MSI protocol

Event name Description

GETS Data read or fetch request
GETX Write request

UPG Upgrade request
PUTS Eviction notification (clean)
PUTX Eviction notification (dirty)

DataRepl Eviction in the Data array

(b) Events of TO-MSI protocol

Table 1: States and events of the TO-MSI example coherence protocol

Component
Conv.
8MB

RC-4/1
Full

RC-4/1
16-way

Tag 21 22 22
Coherence 4 5 5

Full-map vector 8 8 8
Replacement 1 1 1
Fwd. pointer - 14 4

Tot. tag entry (bits) 34 50 40

Data 512 512 512
Valid - 1 1

Replacement - 1 1
Reverse pointer - 16 6

Tot. data entry (bits) 512 530 520

Tag array (K entries) 128 64 64
Data array (K entries) 128 16 16

Total size (Kbits) 69888 11680 10880
Reduction 83.3% 84.4%

Table 2: Hardware cost

system, we detail a 8 MB conventional cache and a reuse
cache with a 1:8 scaling in the data array and a 1:2 scaling
in the tag array. We consider 16-way and fully associative
data array designs for the reuse cache.

The conventional cache is 16-way, and has 64-byte lines.
Further, the conventional cache requires 34 bits per line in
the tag array: 21-bit tags (assuming 40 bits of physical ad-
dress space in a 64-bit architecture), 12-bit coherent state
(4-bit state and 8-bit presence vector) and 1 bit for replace-
ment (NRU algorithm3). The data array requires 512 bits
per line. Overall, the conventional cache needs 69888 Kb
(see Table 2).

The reuse cache has a 1 MB data array and a tag array
with the same number of entries as a 4 MB conventional
cache (RC-4/1 in the Table 2 headings). A tag array en-
try requires the same fields as a conventional cache plus a
forward pointer per line and one additional bit for the co-
herence state4. The forward pointer requires 14 bits for the
fully associative (16 K-line) data array but only 4 bits for
the 16-way data array. Each data array entry requires 512
bits of data, a reverse pointer, one bit for the replacement
policy (Clock/NRU), and one valid bit per entry. The re-
verse pointer requires 16 bits for the fully associative data
array (4 and 12 bits to store way and set, respectively) but
only 6 bits for the 16-way data array (4 and 2 bits to store
way and set index, respectively).

Overall, the reuse cache (4 MB tag array / 1 MB data ar-
ray) with fully associative data array needs 11680 Kb while

3
Although LRU has been used as the replacement policy of the con-

ventional cache in Section 5, NRU has been considered here to not
bias the comparison.
4
We consider the coherence protocol that supports our proposal

roughly doubles the original in number of states, and thus we add
on one additional bit.

Org. Tag acc. Data acc. Total acc.

RC-8/8 +36% same +10%
RC-8/4 +36% -16% -3%

Table 3: Relative variations of the reuse cache access latency
with respect to an 8MB conventional cache (organized in 4
banks of 2 MB).

the reuse cache with 16-way data array needs 10880 Kb.
Thus, the set-associative organization of the data array re-
quires 6.8% fewer bits than the fully associative design. Re-
garding the 8 MB conventional cache, the example reuse
cache with fully associative data array would require only
a 16.7% of its storage capacity (15.6%, considering the set-
associative data array).

3.6 Latency
This section describes a comparison of latencies between

conventional and reuse caches. CACTI v6.5 was employed to
model the cache access latency [25]. Serial access to SRAM
tag and data arrays was assumed. Such arrays use a 32-nm
technology node.

Table 3 shows relative latency variations with respect to
an 8 MB conventional cache for two configurations: i) a
reuse cache with the same tag and data array entries as the
8 MB conventional cache (RC-8/8); and ii) a reuse cache
with the same number of tags but half the number of data
array entries that there are in the 8 MB conventional cache
(RC-8/4). With respect to a conventional cache with the
same number of sets, the tag array access time of a reuse
cache increases by 36% due to the additional bits of the for-
ward pointers. Access latency to the data array decreases
by 16% when its size is reduced from 8 to 4 MB. Overall, the
RC-8/4 access latency is 3% lower than in the 8 MB con-
ventional cache. It is important to note that the data array
access latency of the 8 MB conventional cache is roughly
three times larger than its tag array access latency.

In Section 5, when comparing reuse and conventional ca-
ches, the data array, or both the tag and the data arrays
of the reuse cache are always smaller than those of conven-
tional caches. Thus, we consider that the access time of the
evaluated reuse cache configurations does not increase with
respect to the conventional cache with which it is compared.
Further, we assume the same latency in all reuse cache con-
figurations, although the access time decreases significantly
as the sizes of the tag and data arrays decrease.

314

Private L1 I/D
32 KB, 4-way, 64 B line size, 1-cycle
access latency

Private unified L2
256 KB, 8-way, 64 B line size, 7-cycle
access latency

Shared L3

8 MB inclusive (4 banks of 2 MB each),
64 B interleaving, 64 B line size. Each
bank: 16-way, LRU replacement, 10-cycle
access latency. 16 MSHR

DRAM
1 rank, 16 banks, 4 KB page size, Double
Data Rate (DDR3 1333 MHz). 92-cycle
raw access latency

DRAM bus
667 MHz, 8 B wide bus, 4 DRAM cy-
cles/line, 16 processor cycles/line

Table 4: Baseline system configuration

4. METHODOLOGY

4.1 Experimental setup
Simics, a full-system execution-driven simulator [22] was

used as a simulation engine. The Ruby plugin from Mul-
tifacet’s multiprocessor simulator toolset was employed to
model the memory hierarchy with a high degree of detail:
coherence protocol, on-chip network, communication buffer-
ing, contention, etc. [23]. Moreover, we added a detailed
DDR3 DRAM model.

Multiprogrammed SPEC CPU 2006 workloads were run
on a Solaris 10 Operating System. In order to locate the end
of the initialization phase, we used hardware counters on a
real machine and ran all the SPARC binaries with the refer-
ence inputs until completion. For an eight-core system, we
produced a set of 100 workloads, random combinations of 8
programs each, taken from all the 29 SPEC CPU 2006 pro-
grams (no effort being made to distinguish between integer
and floating point applications). The applications appear
from 16 to 35 times, the average number of occurrences be-
ing 27.6 with an standard deviation of 4.5.

At each checkpoint, it was ensured that no application was
in its initialization phase. This is achieved by running all the
programs for as many instructions as the longest initializa-
tion phase among all the programs included in the multipro-
grammed workload. The cycle-accurate simulation started
at those checkpoints, 300 million cycles were run to warm
up the memory hierarchy, and statistics were then collected
for the next 700 million cycles. Table 5 shows the average of
misses per kilo-instruction (MPKI) in all the instances of an
application at the three levels of the cache hierarchy when
the eight applications of a workload were run together.

4.2 Baseline system
The baseline system has eight in-order cores. Each core

has two levels of private caches and all the cores share the
last-level inclusive cache. This SLLC has four banks inter-
leaved at cache line granularity (64 B). A MSI-MOSI pro-
tocol maintains the memory system coherent. A crossbar
communicates the local caches and the SLLC banks. There
is a single DDR3 memory channel and the DRAM memory
bus runs at a quarter of the core frequency. Table 4 gives
additional implementation details.

5. RESULTS
We first compare the performance of the reuse cache vary-

ing the data array size and associativity. We then study the
optimal size ratio between tag and data arrays. In Sec-
tion 5.3 and Section 5.4 we give insight into the reuse cache

RC-8/4 RC-8/2 RC-8/1 RC-8/0.5
0.9

0.95

1.0

1.05

1.1

Pe
rf.

ov
er

co
nv

.
8M

B

16-assoc
32-assoc
64-assoc
128-assoc
FullyAssoc

Figure 4: Average speedup relative to the baseline for reuse
caches of various data array sizes and associativities. Tag
array size and associativity are 8 MBeq and 16, respectively.

behavior by analyzing the percentage of lines not entered in
the data array and the number of live lines when reducing
the reuse cache size. Subsequently, in Section 5.5, we com-
pare the reuse cache with DRRIP [12], a state of the art re-
placement algorithm, and NCID [35], a recent proposal that
uses a decoupled tag-data cache. Finally, in Section 5.7,
we analyze the behavior of the reuse cache when running
parallel applications.

Throughout this section, results are expressed as speed-
ups of the different reuse cache configurations relative to a
baseline SLLC. The baseline SLLC considered is an 8 MB,
16-way conventional cache with LRU replacement.

When describing the reuse cache tag array, we use MBeq
as the tag array equivalent to that of a 1 MB conventional
cache. We always maintain a tag array associativity of 16
and a line size of 64 bytes. For instance, a 4 MBeq tag array
has 64 K tags (4 MB / 64) organized in 4 K sets (64 K tags
/ 16). We use RC-x/y to refer to a reuse cache with a tag
array equal to that of a x MB conventional cache (x MBeq)
and a data array of y MB. As an example, RC-4/1, the reuse
cache outlined in Table2, has a tag array equivalent to a 4
MB conventional cache with 1 MB data array.

5.1 Data array size and associativity
Figure 4 shows the performance of a reuse cache with 8

MBeq tag array, varying the data array size from 4 MB
(RC-8/4) to 512 KB (RC-8/.5) and setting the data array
associativity to 16, 32, 64, 128 or fully associative. Each bar
represents average performance relative to baseline for the
100 workloads described in Section 4.

In general, performance varies very slightly and unevenly
for associativities between 16 and 128. The reuse cache with
a fully associative data array achieves better results for all
sizes. However, the differences are not significant. For in-
stance, the difference between 16-way and fully associative
varies from -0.1% for RC-16/8 to +1% for RC-4/1. We can
conclude that the fully associative and set-associative de-
signs are very similar both in cost and performance. It is
important to remember that the fully associative organiza-
tion is easy to implement because it never needs associative
lookups. Further, the clock replacement algorithm is really
simple, being even cheaper than NRU in a set-associative
organization with a high associativity. Unless stated other-
wise, the remaining experiments are carried out with fully
associative data arrays.

Regarding the size of the data array, a reuse cache with

315

Application L1 L2 LLC Application L1 L2 LLC Application L1 L2 LLC

perlbench 3.7 0.8 0.6 leslie3d 29.5 18.1 17.7 libquantum 36.6 36.6 36.6
bzip2 8.2 4.3 2.1 namd 1.4 0.2 0.1 h264ref 3.5 0.7 0.6

gcc 21.8 7.1 6.2 gobmk 9.5 0.5 0.4 tonto 4.88 0.86 0.52
bwaves 20.3 19.6 19.6 dealII 2.3 0.3 0.3 lbm 68.1 39.2 39.2
gamess 75.3 46.2 28.6 soplex 6.7 5.8 4.8 omnetpp 7.3 4.4 1.2

mcf 22.9 22.2 18.1 povray 11.0 0.3 0.3 astar 6.9 0.9 0.7
milc 21.6 21.6 21.5 calculix 13.8 3.7 1.5 wrf 4.1 1.6 0.5

zeusmp 12.3 6.4 6.3 hmmer 2.9 2.2 1.7 sphinx3 13.8 8.0 6.3
gromacs 8.71 5.91 5.91 sjeng 4.2 0.5 0.5 xalancbmk 8.2 7.0 6.4

cactusADM 13.9 1.4 0.7 GemsFDTD 25.8 25.7 21.6

Table 5: Average MPKI at each cache level of the baseline system (8 MB LRU).

RC-X/8 RC-X/4 RC-X/2 RC-X/1 RC-X/0.5

0.9

0.95

1.0

1.05

1.1

1.15

Pe
rf.

ov
er

co
nv

.
8M

B

8 16 32 64 4 8 16 32 2 4 8 16 2 4 8 16 2 4 8 16

conv. 16MB
conv. 8MB
conv. 4MB

Figure 5: Average speedup relative to the baseline for reuse
caches varying the tag and data array sizes. Tag array as-
sociativity is 16.

one quarter the capacity of the baseline cache (RC-8/2)
shows on average even better performance than the baseline
cache (+ 2.4%). A further reduction in the data array, RC-
8/1, marks a turning point with the reuse cache performing
slightly less well than the baseline cache (-0.5%).

5.2 Tag array size
In this section, we investigate which tag array size achieves

the best performance for each size of the data array. Fig-
ure 5 shows the relative performance of a reuse cache relative
to the baseline 8 MB cache. For each size of the data ar-
ray (X axis), we consider several different sizes of the tag
array. In each configuration, the tag array must have more
entries than the maximum of the data array and the sum of
entries in the private caches (8x256 KB). In order to extend
the comparison to a 16 MB conventional cache, we will also
include a reuse cache with a 8 MB data array.

For a given data array size, increasing the size of the tag
array beyond a certain limit is not worthwhile, because it
only leads to identifying a larger reuse working set, the size
of which is beyond the capacity of the data array. The op-
timum data-tag ratio is always 4 except for a 512 KB data
array, where a ratio of 4 requires a 2 MBeq tag array, which
is the minimum for tracking the aggregated 2 MB of pri-
vate caches. Further, the small performance advantage of
RC-32/8 over RC-16/8 would not justify selecting the 32
MBeq tag array. The same holds true comparing RC-16/4
and RC-8/4. Hence, for the remaining sections, the refer-
ence sizes of the reuse cache for each data array size will
be: RC-8/4, RC-8/2, RC-4/1 and RC-4/0.5. We can iden-
tify RC-4/1 as the smallest reuse cache that performs better
than a conventional 8 MB cache; indeed, RC-4/1 requires
half the tags, one-eighth the data, and hence only 16.7% of

0.9
1.0
1.1
1.2

R
C

-8
/4

0.9
1.0
1.1
1.2

R
C

-8
/2

0.9
1.0
1.1
1.2

R
C

-8
/1

0 20 40 60 80 100
Workloads

0.9
1.0
1.1
1.2

R
C

-8
/0

.5

Figure 6: Speedup of the selected reuse cache configurations
for all the 100 multiprogrammed workloads, relative to the
8 MB baseline. The data array ranges from 4 MB (RC-8/4)
to 512 KB (RC-4/0.5).

the storage of the conventional 8 MB cache.
Figure 5 also shows the relative performance of 16-way

LRU in 4 and 16 MB caches relative to the 8 MB baseline
(red and black lines). We could replace both conventional
caches with the smaller reuse cache giving some performance
advantages. Specifically, a reuse cache with the same tag
array but half the data array (RC-16/8) outperforms a 16
MB conventional cache. Likewise, for a 4 MB conventional
cache it suffices a reuse cache with the same tag array but
one-eighth the data array (RC-4/0.5).

Figure 6 plots the reuse cache speed-ups for every work-
load, varying the reuse cache size. We only show the previ-
ously selected configurations having the best performance/size
tradeoff. In each plot, the different workloads are ordered
along the horizontal axis according to their speed-up.

As can be seen, the speed-ups range increases as the size of
the reuse cache decreases. RC-8/4 outperforms the baseline
for almost all the workloads (99 out of 100). RC-4/1 seems
to be a good design point, as it is better than the baseline
for 64 out of 100 workloads, reaching a speedup of 1.14 and
a slowdown of 0.82, only four and two workloads suffering
losses and improving their performance by more than 10%,
respectively.

5.3 Data lines entered in the data array
Table 6 shows, for the one hundred workloads, the mean

316

RC-x/y 8/4 8/2 4/1 4/0.5 Conv.

Avg. (%) 93 93 95 95 0
Min. (%) 81 81 89 89 0

Table 6: Mean and minimum percentage of lines not entered
in the data array with respect to tags entered in the tag array
for different reuse cache and conventional configurations.

LRU DRRIP NRR RC-8/4 RC-8/2 RC-4/1 RC-4/0.5
0

0.25

0.5

0.75

1

A
liv

e
ca

ch
e

fra
ct

io
n

0.161

0.359
0.400

0.551
0.487

0.573

0.415

Figure 7: Average fraction of live lines for 8 MB LRU, DR-
RIP, and NRR conventional caches, and for the selected
reuse cache configurations

and the minimum percentage of lines not entered in the
data array with respect to tags entered in the tag array.
Clearly, this percentage is zero in a conventional cache be-
cause tags and data are always allocated together. In a reuse
cache, however, the selective allocation policy discards most
lines. As we can see, the reuse cache is very selective allo-
cating data lines, and selectivity increases as the tag array
decreases. For instance, the RC-8/4 and the RC-4/1 con-
figurations discard on average 93 and 95.4%, respectively.
Even for the most demanding workloads more than 80% of
the data lines are discarded. Hence, we can conclude that
the reuse cache is very effective at protecting useful data
lines against pollution, because the discarded data lines are
not able to evict lines that have shown reuse. On the other
hand, the percentage of reused data lines loaded twice -the
downside of reuse caches-, is exactly 100% minus the per-
centages above. For instance, the RC-4/1 reloads 4.6% of
the data lines, paying twice the main memory accessing cost.

5.4 Fraction of live lines in the data array
It is worth considering how the average lifetime of the

lines kept in the reuse cache changes. Figure 7 shows the
average fraction of the data lines that are alive for all 100
workloads in the best reuse cache configurations. We also
plot data for the 8 MB conventional cache with LRU and
DRRIP [12] replacement policies. The average percentage
of live lines in the baseline cache is only 16.1% with LRU
replacement (LRU in Figure 7) and 35.9% with DRRIP,
consistent with the analysis presented in Section 2 for the
example workload. The reuse cache RC-8/4 increases the
percentage of live lines up to 55.1%. That is, with half
the lines of the baseline cache, RC-8/4 almost doubles the
number of live lines compared to the baseline cache (55.1%
of 4 MB vs. 16.1% of 8 MB). This is because the combined
tag/data replacement algorithm is able to identify the lines
being reused.

RC-8/2 and RC-4/1 also achieve high fractions of live
lines. However, a similar fraction operating in a smaller data
array implies a very significant reduction in the total num-

RC-16/8 RC-8/4 RC-8/2 RC-4/1 RC-4/0.5
0.9

0.95

1.0

1.05

1.1

Pe
rf.

ov
er

co
nv

.8
M

B

1.099

1.056

1.024

1.004

0.974

DRRIP 16MB (140032)
NRR 16MB (139776)

DRRIP 8MB (70016)

NRR 8MB (69888)

DRRIP 4MB
(35008)

NRR 4MB (34944)

(81024) (40448) (23360) (11664) (7368)

Figure 8: Average speed-ups of reuse caches and conven-
tional caches using both NRR and DRRIP. Hardware stor-
age (in Kbits) for each configuration is shown between paren-
theses

ber of live lines. In spite of that, with a quarter the lines of
the baseline cache, with RC-8/2 there are only 9% fewer live
lines than with the baseline cache. RC-4/1, while keeping a
significantly lower number of live lines, still improves on the
performance of the baseline cache because the replacement
algorithm of the data array prioritizes lines with the short-
est reuse distance, which are the lines that receive the most
hits.

5.5 Comparison with alternative state of the
art proposals

Throughout previous sections, results have been reported
as speed-ups relative to a baseline cache with LRU replace-
ment. Performance achieved by LRU replacement may be
considered an upper bound for commercial processors as
they usually use LRU approximations with slightly poorer
performance. However, in this section we also compare the
reuse cache with both a conventional cache fitted with state
of the art replacement algorithms and an alternative decou-
pled cache organization that also makes it possible to reduce
the data array size.

Comparison with RRIP [12] and NRR [1]. Thread-
aware (TA) DRRIP and NRR are two state of the art re-
placement algorithms for SLLCs (see Section 6 and Sec-
tion 3.2, respectively, for brief descriptions of these schemes).
Figure 8 compares conventional caches operated with TA-
DRRIP and NRR (represented as horizontal lines) with sev-
eral reuse cache configurations (represented as bars). The
results plotted are the average speed-ups relative to the 8
MB baseline cache using LRU for all the 100 workloads de-
scribed in Section 4.

TA-DRRIP replacement improves on the conventional 8
MB cache performance by 3.7% with respect to LRU re-
placement. Even so, a reuse cache with half the data array
(RC-8/4) is 2% better than the conventional cache with TA-
DRRIP. Similarly, RC-16/8 is 0.5% better than the conven-
tional 16 MB cache with TA-DRRIP. Finally, the conven-
tional 4 MB cache with TA-DRRIP could be replaced with
a reuse cache with one-eighth of the data array (RC-4/0.5)
with similar performance.

Figure 8 also shows the hardware storage needed for each
configuration. Comparing hardware cost and performance of
the reuse cache to a 16 MB conventional cache using DRRIP

317

or NRR, we can observe how the latter has a hardware cost
of 140,000 Kbits to achieve a relative performance of 1.094
relative to the baseline, slightly lower than 1.099 achieved
by the RC-16/8, which has a hardware cost of 81,024 Kbits
(41% hardware cost savings with respect to the 16 MB
conventional cache with DRRIP or NRR). At the same time,
an 8 MB conventional cache using DRRIP or NRR has a cost
of 70,000 Kbits achieving a relative performance of 1.037;
in contrast RC-8/4 achieves 1.056 having a cost of 40,448
Kbits (48% hardware cost savings with respect to the 8
MB conventional cache with DRRIP or NRR). If we focus
on a 4 MB conventional cache using DRRIP or NRR, we
see it has a cost of 35,000 Kbits and achieves a relative
performance of 0.975 which is similar to the performance of
RC-4/0.5. However, the latter has a cost of 7,368 Kbits,
80% lower.

Comparison with NCID [35]. NCID involves the adding
of tags to each set of a conventional SLLC in order to main-
tain tag inclusion of the private caches while the data array
can be non-inclusive or exclusive. The authors who proposed
this approach evaluate the NCID architecture supporting
a selective allocation policy to address transient data, and
compare it with a conventional cache with a bimodal inser-
tion policy [26] in terms of miss rate reduction. However,
NCID with selective allocation could also be used to reduce
the data array size maintaining performance.

Following the NCID implementation, the selective mode
allocates 5% of lines as most recently used (data and tag)
and the remaining 95% as least recently used (only tag). Set
dueling selects between selective and normal allocation for
each thread.

When specializing NCID to achieve size reduction, we re-
duce the data array with respect to the tag array. The NCID
architecture requires an equal number of sets in the tag and
data arrays. Hence, reducing the data array size implies
reducing the data array associativity. As an example, an
NCID cache with a 16-way, 8 MBeq tag array implies a 1
MB data array with only 2 ways. Therefore, in order to
make a fair comparison, we have to choose reuse caches that
have the same number of sets and associativities in the data
array.

Figure 9 compares reuse cache with NCID for an 8 MBeq
tag array and several data array sizes. Each bar represents
average performance relative to the baseline cache for the
100 workloads reported in Section 4.

By reducing the data array size, no NCID settings match
the performance achieved by the baseline 8 MB cache. For
all data array sizes, the reuse cache performs better than
NCID, with relative gains of 7.0, 6.4, 5.2 and 5.3% for data
array sizes 4 MB, 2 MB, 1 MB and 512 KB, respectively.

5.6 Per-application performance analysis
In order to clarify how the reuse cache affects perfor-

mance of each application, Figure 10 shows the distribution
of speed-ups by application. The number of workloads in
which each application appears is shown along the top of
the graph. For three reuse cache configurations with an 8
MB tag array and several data array sizes (RC-8/4, RC-8/2
and RC-8/1) five figures are plotted, namely the minimum,
the first quartile, the median, the third quartile, and the
maximum of the performance with respect to an 8 MB con-
ventional cache using LRU.

RC-8/4 improves the behavior of all the applications in

RC-8/4 RC-8/2 RC-8/1 RC-8/0.5
0.9

0.95

1.0

1.05

1.1

Pe
rf.

ov
er

co
nv

.
8M

B

NCID-8/4 NCID-8/2 NCID-8/1 NCID-8/0.5

RC
NCID

Figure 9: Average speedups of NCID and reuse caches

most mixes with respect to the baseline. Only the first quar-
tile of performance for Gems and Calculix is lower than 1
(0.99 and 0.98, respectively), but in both cases the median
is greater than or equal to 1.

The number of applications in which performance losses
are observed increases as data array size is progressively re-
duced. When RC-8/1 is used, the median of five applications
is clearly lower than 1, the third quartile being lower than
1 in three cases. In these applications, the reuse distance
is longer than the available space in the data array. Thus,
these lines will not be reused within their stay in the cache
and they will be evicted very quickly. Such behavior allows
applications with shorter reuse distances to cope with the
available data array space.

5.7 Parallel workloads
In this section, we analyze the behavior of our proposal

when running parallel applications. We selected the five
applications of the PARSEC [3] and SPLASH-2 [32] suites
which have more than 1 MPKI in the baseline SLLC. Specifi-
cally, the selected applications are blackscholes, canneal, fer-
ret, and fluidanimate from PARSEC and ocean from SPLASH-
2; and their MPKIs are 4.5, 3.5, 1.3, 1.7, and 13.4, respec-
tively. We utilized the simmedium input set for PARSEC
applications and a 1026x1026 grid for Ocean. For PAR-
SEC applications a checkpoint was created in the paral-
lel phase. The cycle-accurate simulation started at those
checkpoints, warming the memory hierarchy for 300 million
cycles, and then collecting statistics for the next 700 mil-
lion cycles. Ocean was run to completion but performance
statistics were only taken in the parallel phase.

Figure 11 shows, for the five parallel applications, the per-
formance of the reuse cache with data array sizes from 4
MBytes (RC-8/4) to 512 KBytes (RC-8/0.5) relative to the
baseline SLLC. Only ferret suffers a loss in performance,
relative to the baseline cache, with a reuse cache. This loss
varies from 1% with RC-8/4 to 11% with RC-8/0.5. How-
ever, in the other four applications even RC-8/0.5 achieves
better performance than the baseline cache (canneal and
ocean showing speed-ups of more than 10%).

5.8 Higher memory bandwidth
We have analyzed what would be the impact on the sys-

tem performance of having a higher available bandwidth to
main memory. This higher available bandwidth would make
misses to pay, in general, a lower latency. On average, we

318

0.9

1.0

1.1

1.2

1.3

R
C

-8
/4

27 27 35 32 23 30 35 30 19 28 20 28 33 28 25 30 29 26 16 25 31 30 24 30 31 31 23 28 26

1.92 1.86 1.45

0.9

1.0

1.1

1.2

1.3

R
C

-8
/2

0.78 0.70 0.35 0.73

pe
rlb

en
ch

bz
ip

2

gc
c

bw
av

es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
AD

M

le
sl

ie
3d

na
m

d

go
bm

k

de
al

II

so
pl

ex

po
vr

ay

ca
lc

ul
ix

hm
m

er

sj
en

g

G
em

sF
D

TD

lib
qu

an
tu

m

h2
64

re
f

to
nt

o

lb
m

om
ne

tp
p

as
ta

r

w
rf

sp
hi

nx
3

xa
la

nc
bm

k

0.9

1.0

1.1

1.2

1.3

R
C

-8
/1

0.66 0.67 0.34 0.690.68 0.79

Figure 10: Per-application speedup analysis

blackscholes canneal ferret fluidanimate ocean0.85

0.9

0.95

1.0

1.05

1.1

S
pe

ed
up

ov
er

ba
se

lin
e

RC-8/4
RC-8/2
RC-4/1
RC-4/0.5

Figure 11: Speedup with reuse cache relative to the baseline
for five parallel applications, with data array sizes from 4
MBytes (RC-8/4) to 512 KBytes (RC-8/0.5)

have not observed much contention at the memory controller
neither in the conventional nor in the reuse cache. We run
simulations including 2 and 4 memory channels and, as it
could be expected, simulations showed that the system per-
formance varied less than 1%.

6. RELATED WORK AND CONCLUDING
REMARKS

Two recent studies are directly related to our proposal
[20, 35]. The cache organization relies on tag/data decou-
pling to retain tags inclusion property and to use a selective
allocation policy of lines in a cache miss.

The NCID architecture [35] offers several tag/data decou-
pling designs to retain the inclusion property on tags. One
such design uses NCID to support a selective allocation pol-
icy to address transient data. NCID only allocates tag and
data for a randomly chosen 5% of the lines and only tag

for the remaining 95%. Set dueling is proposed to select
between normal or selective fill policies. This architectural
option can be used to reduce the data array size, and al-
though not the purpose for which it was designed, according
to the results in Section 5.4, its performance as a reuse cache
is quite good.

Lodde et al. [20] use cache line state and coherence mes-
sages to classify lines as private or shared. Such information
is used to selectively allocate only shared lines in the data
array in order to reduce data array size. This organization
requires tags to be moved within the tag array when the
classification of a line changes. The information used by the
selective allocation policy does not take reuse into account.
Thus, transient private cache lines are put into the shared
data array, increasing the required data array size. Our
proposal relies on reuse locality detection, independently of
which private cache requests the line. Hence, shared lines
are implicitly allocated in the data array and private lines
are only allocated if reuse locality is detected.

In addition, Chishti et al. propose the NuRAPID cache,
which decouples tag lookup and data placement in order to
reduce the average access latency in dynamic non-uniform
cache architectures [6]. Tag/data decoupling has also been
proposed in the V-way cache by Qureshi et al. to achieve a
high associativity and reduce the number of conflict misses
in the non-inclusive last level cache [27]. This proposal was
evaluated in a single-processor system. The V-way cache
stores the same number of items in tag and data arrays and
inserts into the cache all the data requested by the lower
level caches. In contrast, the reuse cache we propose stores
all the tags but only inserts in the data array the small
fraction of lines showing reuse.

Several studies explore the prediction of the reuse behav-

319

ior of the incoming lines when they enter the SLLC, and
use of this prediction in an insertion policy [5, 18, 29, 33].
These approaches are complementary to the reuse cache de-
sign. For instance, the predictors proposed in [29, 33] could
be used to increase the performance of the reuse cache by
predicting the reuse behavior of a cache line on a tag miss.
The OBM mechanism proposed in [18] signals the first line
to be reused in the incoming-victim line pair involved in a
miss. Again, this detection scheme could be used to improve
the reuse cache, for instance, on a tag array hit missing in
the data array.

Chaudhuri et al. propose to track reuse behavior within
the private caches and utilize it to estimate reuse in the
SLLC when the lines are evicted from private caches [5].
Such a predictor could be used to change the fixed reuse
prediction performed in the reuse cache whenever a line is
evicted from private caches.

Reuse locality was first observed and exploited in cache
memories for disks. Segmented LRU tries to protect useful
lines against harmful behaviors (i.e., a burst of single-use ac-
cesses) by dividing the classical LRU stack into two different
logical lists, the referenced and the non-referenced list [13].
The boundary between lists is fixed and victims are selected
in order to preserve that limit. Recent proposals apply this
idea to the replacement policy of the SLLC.

Under the dynamic insertion policy, the maximum size of
the non-reference list is one (LRU position). Two replace-
ment policies, LRU and the bimodal insertion policy, are
dynamically selected using set dueling [26]. The bimodal
insertion policy puts most of incoming lines into the LRU
position and the other lines into the MRU position. This
idea was used in [35] to evaluate an architectural option
with selective allocation. Other proposals such as dynamic
segmentation [15] and dueling segmented LRU [9] consider
these two logical LRU divisions and try to dynamically find
an optimal configuration using set dueling.

Re-reference interval prediction (RRIP) involves a modi-
fied LRU that considers a chain of segments, where all the
cache lines in a segment are supposed to have the same re-
reference interval [12]. In static RRIP, new lines are inserted
with an intermediate re-reference interval. Bimodal RRIP
inserts lines with long re-reference intervals but a small frac-
tion of randomly chosen lines are introduced with interme-
diate re-reference intervals. Finally, this proposal includes
a dynamic version, DRRIP, that uses set dueling to select
between static and bimodal RRIP. For a SLLC in a CMP,
TA-DRRIP requires a set dueling monitor for each thread.

In inclusive hierarchies the private caches absorb most of
the temporal locality and the hot lines may lose positions
in the LRU stack of the SLLC, up to the point of being
evicted. A recent paper by Jaleel et al. addresses this issue
and proposes several mechanisms to identify these lines and
to prevent their replacement in the SLLC [10]. The identi-
fication of hot lines can be used to introduce more logical
lists or segments to improve performance. In a reuse cache,
these lines are identified using directory state information.
The reuse cache predicts that temporal locality of a line is
drained when such a line is evicted from the private caches.
Thus, dead block prediction can be used to tune the predic-
tion [16, 17, 19], although it is necessary to send a message
to SLLC.

Previous studies have already analyzed how the SLLC re-
placement algorithm should act with prefetched data. With

the aim of avoiding cache pollution, prefetched data should
be assigned a lower priority than the data actually demanded
by the processors [31, 34]. Moreover, Wu et al. still consider
prefetched data as low priority contents once the processor
have used them, relying on the idea that the prefetcher will
be able to put that data into the cache again in advance if it
has already achieved this once. The replacement algorithm
used in the reused cache is able to adopt these ideas in a
straightforward way: simply considering prefetched lines to
have a priority as low as the non-reused data.

In this work, we use NRR as the replacement algorithm
for the tag array. However, alternative replacement algo-
rithms proposed for increasing hit ratio may govern the tag
or data replacement in a reuse cache, in particular those,
that for a given data array size, are able to identify lines
that will be referenced in the near future. It is not our goal
to select the best of them, but rather to show that it is pos-
sible to dramatically reduce the SLLC size without compro-
mising performance, even using extremely cheap and simple
replacement algorithms.

7. CONCLUSIONS
The reference stream observed by the SLLC of a CMP

exhibits little temporal locality but, instead, it exhibits reuse
locality. As a consequence, a high proportion of the SLLC
lines is useless because the lines will not be requested again
before being evicted, and most hits observed by the SLLC
come from a small subset of already reused lines.

In this paper, we have proposed the reuse cache, an SLLC
with a very selective data allocation policy intended to track
and keep that small subset of lines showing reuse. In a
reuse cache, the tag and the data arrays are decoupled. On
the one hand, the size of data array can be dramatically
reduced without negatively affecting performance. On the
other hand, the tag array tracks the reuse order of recently
referenced lines, and has the size required to store the tag
of the lines in the data array and private caches.

We have evaluated our proposal by simulating an eight-
core CMP system running multiprogrammed and multi-
threaded workloads. The results show that a reuse cache
can achieve the same performance as a conventional cache
with a much lower hardware cost. For instance, a reuse
cache with the tag array equivalent to a conventional 4 MB
cache but with only a 1 MB data array, gives the same aver-
age performance as an 8 MB conventional cache. That reuse
cache would require only a 16.7% of the storage budget of
the conventional cache.

We have illustrated the usefulness of the reuse cache con-
cept with a case study: reducing space and maintaining per-
formance. Evidently, the reuse cache could also be used in
other settings, or for other reasons, for example, seeking to
meet design goals in relation to chip area, performance or
energy tradeoffs.

8. ACKNOWLEDGEMENTS
Thanks to the GaZ people for their support. We also

thank the anonymous reviewers for their valuable comments
and suggestions. This work was supported in part by grants
TIN2010-21291-C02-01 and TIN2012-34557 (Spanish Gov.
and European ERDF), Consolider CSD2007-00050 (Spanish
Gov.), gaZ: T48 research group (Aragón Gov. and European
ESF), and HiPEAC-2 NoE (European FP7/ICT 217068).

320

9. REFERENCES
[1] J. Albericio, P. Ibáñez, V. Viñals, and J. M. Llabeŕıa.

Exploiting reuse locality on inclusive shared last-level caches.
ACM Trans. Archit. Code Optim., 9(4):38:1–38:19, Jan. 2013.

[2] J.-L. Baer and W.-H. Wang. On the inclusion properties for
multi-level cache hierarchies. In Proceedings of the 15th
Annual International Symposium on Computer architecture,
ISCA ’88, pages 73–80, Los Alamitos, CA, USA, 1988. IEEE
Computer Society Press.

[3] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[4] J. Cantin, M. Lipasti, and J. Smith. Stealth prefetching.
SIGOPS Oper. Syst. Rev., 40:274–282, October 2006.

[5] M. Chaudhuri, J. Gaur, N. Bashyam, S. Subramoney, and
J. Nuzman. Introducing hierarchy-awareness in replacement
and bypass algorithms for last-level caches. In PACT, pages
293–304, 2012.

[6] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Distance
associativity for high-performance energy-efficient non-uniform
cache architectures. In Proc. of the 36th annual IEEE/ACM
Int. Symp. on Microarchitecture, MICRO 36, pages 55–,
Washington, DC, USA, 2003. IEEE Computer Society.

[7] F. J. Corbató. A paging experiment with the multics system.
MIT Project MAC Report MAC-M-384, May, 1968.

[8] D. Culler, J. Singh, and A. Gupta. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan
Kaufmann, 1st edition, 1998. The Morgan Kaufmann Series in
Computer Architecture and Design.

[9] H. Gao and C. Wilkerson. A dueling segmented lru replacement
algorithm with adaptive bypassing. In Proc. of the 1st JILP
Workshop on Computer Architecture Competitions, 2010.

[10] A. Jaleel, E. Borch, M. Bhandaru, S. Steely Jr., and J. Emer.
Achieving non-inclusive cache performance with inclusive
caches: Temporal locality aware (tla) cache management
policies. In Proceedings of the 43rd Annual IEEE/ACM Int.
Symp. on Microarchitecture, MICRO ’43, pages 151–162. IEEE
Computer Society, 2010.

[11] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, and
J. Emer. Adaptive insertion policies for managing shared
caches. In Proc. of the 17th int. conf. on Parallel
architectures and compilation techniques, PACT ’08, pages
208–219. ACM, 2008.

[12] A. Jaleel, K. Theobald, S. Steely, and J. Emer. High
performance cache replacement using re-reference interval
prediction (rrip). In Proc. of the 37th annual int. symp. on
Computer architecture, ISCA ’10, pages 60–71. ACM, 2010.

[13] R. Karedla, J. Love, and B. Wherry. Caching strategies to
improve disk system performance. Computer, 27(3):38 –46,
march 1994.

[14] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: exploiting
generational behavior to reduce cache leakage power. In Proc.
28th Annual Int Computer Architecture Symp, pages 240–251,
2001.

[15] S. Khan, Z. Wang, and D. A. Jimenez. Decoupled dynamic
cache segmentation. In Proc. IEEE 18th Int. Symp. High
Performance Computer Architecture HPCA 2012.

[16] S. M. Khan, T. Yingying, and D. A. Jimenez. Sampling dead
block prediction for last-level caches. In Proc. 43rd Annual
IEEE/ACM Int Microarchitecture (MICRO) Symp, pages
175–186, 2010.

[17] A.-C. Lai, C. Fide, and B. Falsafi. Dead-block prediction &
dead-block correlating prefetchers. In Proc. 28th Annual Int
Computer Architecture Symp, pages 144–154, 2001.

[18] L. Li, D. Tong, Z. Xie, J. Lu, and X. Cheng. Optimal bypass
monitor for high performance last-level caches. In Proceedings
of the 21st international conference on Parallel architectures
and compilation techniques, PACT ’12, pages 315–324, New
York, NY, USA, 2012. ACM.

[19] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache bursts: A
new approach for eliminating dead blocks and increasing cache
efficiency. In Proc. MICRO-41 Microarchitecture 2008 41st
IEEE/ACM Int. Symp, pages 222–233, 2008.

[20] M. Lodde, J. Flich, and M. E. Acacio. Dynamic last-level cache
allocation to reduce area and power overhead in directory
coherence protocols. In Euro-Par, pages 206–218, 2012.

[21] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos,
O. Kocberber, J. Picorel, A. Adileh, D. Jevdjic, S. Idgunji,
E. Ozer, and B. Falsafi. Scale-out processors. In Proc. 39th
Annual Int. Symp. on Computer Architecture (ISCA), 2012,
pages 500 –511, june 2012.

[22] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platform.
Computer, 35(2):50–58, 2002.

[23] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu,
A. Alameldeen, K. Moore, M. Hill, and D. Wood. Multifacetś
general execution-driven multiprocessor simulator (gems)
toolset. SIGARCH Comput. Archit. News, 33:2005, 2005.

[24] S. Microsystems. UltraSPARC T2 supplement to the
UltraSPARC architecture 2007. Draft D1.4.3, 19 Sep 2007.

[25] N. Muralimanohar, R. Balasubramonian, and N. Jouppi.
Optimizing nuca organizations and wiring alternatives for large
caches with cacti 6.0. In Proc. 40th Annual IEEE/ACM Int.
Symp. Microarchitecture MICRO 2007, pages 3–14. IEEE
Computer Society, 2007.

[26] M. Qureshi, A. Jaleel, Y. Patt, S. Steely, and J. Emer.
Adaptive insertion policies for high performance caching. In
Proceedings of the 34th annual international symposium on
Computer architecture, ISCA ’07, pages 381–391, New York,
NY, USA, 2007. ACM.

[27] M. K. Qureshi, D. Thompson, and Y. N. Patt. The v-way
cache: Demand based associativity via global replacement. In
Proceedings of the 32nd annual international symposium on
Computer Architecture, ISCA ’05, pages 544–555, Washington,
DC, USA, 2005. IEEE Computer Society.

[28] J. B. Rothman and A. J. Smith. The pool of subsectors cache
design. In Proceedings of the 13th international conference on
Supercomputing, ICS ’99, pages 31–42, New York, NY, USA,
1999. ACM.

[29] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry. The
evicted-address filter: a unified mechanism to address both
cache pollution and thrashing. In Proceedings of the 21st
international conference on Parallel architectures and
compilation techniques, PACT ’12, pages 355–366, New York,
NY, USA, 2012. ACM.

[30] A. Seznec. Decoupled sectored caches: conciliating low tag
implementation cost. In Proceedings of the 21st annual
international symposium on Computer architecture, ISCA ’94,
pages 384–393, Los Alamitos, CA, USA, 1994. IEEE Computer
Society Press.

[31] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback
directed prefetching: Improving the performance and
bandwidth-efficiency of hardware prefetchers. In Proc. IEEE
13th Int. Symp. High Performance Computer Architecture
HPCA 2007, pages 63–74, 2007.

[32] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The splash-2 programs: characterization and methodological
considerations. In Proc. Symp. nd Annual Int Computer
Architecture, pages 24–36, 1995.

[33] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C.
Steely, and J. Emer. SHiP: signature-based hit predictor for
high performance caching. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO-44 ’11, pages 430–441, New York, NY, USA, 2011.
ACM.

[34] C.-J. Wu, A. Jaleel, M. Martonosi, S. C. Steely, Jr., and
J. Emer. Pacman: prefetch-aware cache management for high
performance caching. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO-44 ’11, pages 442–453, New York, NY, USA, 2011.
ACM.

[35] L. Zhao, R. Iyer, S. Makineni, D. Newell, and L. Cheng. NCID:
a non-inclusive cache, inclusive directory architecture for
flexible and efficient cache hierarchies. In Proceedings of the
7th ACM international conference on Computing frontiers,
CF ’10, pages 121–130, New York, NY, USA, 2010. ACM.

321

