
TensorDash: Exploiting Sparsity to Accelerate

Deep Neural Network Training

Mostafa Mahmoud

University of Toronto

mostafa.mahmoud@mail.utoronto.ca

Isak Edo

University of Toronto

edoisak@ece.utoronto.ca

Ali Hadi Zadeh

University of Toronto

hadizade@ece.utoronto.ca

Omar Mohamed Awad

University of Toronto

awadomar@ece.utoronto.ca

Gennady Pekhimenko

University of Toronto, Vector Institute

pekhimenko@cs.toronto.edu

Jorge Albericio

Cerebras Systems

jorge@cerebras.net

Andreas Moshovos

University of Toronto, Vector Institute

moshovos@ece.utoronto.ca

Abstract—TensorDash is a hardware-based technique that
enables data-parallel MAC units to take advantage of sparsity in
their input operand streams. When used to compose a hardware
accelerator for deep learning, TensorDash can speedup the train-
ing process while also increasing energy efficiency. TensorDash
combines a low-cost sparse input operand interconnect with an
area-efficient hardware scheduler. The scheduler can effectively
extract sparsity in the activations, the weights, and the gradients.
Over a wide set of state-of-the-art models covering various
applications, TensorDash accelerates the training process by
1.95× while being 1.5× more energy efficient when incorporated
on top of a Tensorcore-based accelerator at less than 5% area
overhead. TensorDash is datatype agnostic and we demonstrate
it with IEEE standard mixed-precision floating-point units and
a popular optimized for machine learning floating-point format
(BFloat16).

I. INTRODUCTION

Whereas a decade ago the then state-of-the-art neural

networks could be trained on a commodity server within

a few hours, today training the best neural networks has

become an exascale class problem [6], [69]. State-of-the-art

neural networks now require many graphics processors [2]

or specialized accelerators such as the TPU [39], Gaudi [4],

DaVinci [45], or Cerebras CS1 [3] so that they can be trained

within practical time limits. Tuning neural networks, e.g., via

hyperparameter exploration [66] or more generally via network

architecture search [22], for best performance or accuracy

during inference further exacerbates the cost of training. Beyond

the cost of acquiring or getting access to such expensive

computing resources, worse are the operating costs and the

environmental impact of training. Strubell et al., report that

the CO2 emissions of training even a mid-class neural network

stand at about 36 metric tons [67]. Training neural networks

at the “edge” is needed in certain applications as well, e.g.,

to refine an existing model with user-specific information and

input. While the trade offs for edge devices are different than

those for data centers or desktop machines, the need remains

the same: reduce execution time and improve energy efficiency

albeit under different constraints.

It comes then as no surprise that efforts for reducing

the execution time and the energy cost of training have

TABLE I: DNN models studied.

Application Model / Abbreviation

Natural language modeling
BERT [20] / BERT

Stanford Natural Language Inf. [7] / SNLI

Object detection/segmentation Detectron2 [75] / Dtctron2

Image classification

SqueezeNet [37] / SQZNet

VGG [65] / VGG16

ResNet-50 [32] / RsNt50 S

Scene understanding Show and Tell [70] / img2txt

Recommendation systems Neural Collaborative Filtering [33] / NCF

been considerable. Distributed training partitions the training

workload across several computing nodes by exploiting model,

data, and pipeline parallelism to reduce overall latency [17],

[50]. Intra- and inter-node data blocking, reuse, and commu-

nication and computation overlapping orchestrate computing,

memory hierarchy, and communication resources to improve

performance and energy efficiency [10], [35], [74]. Lossless and

lossy compression reduces the footprint of the vast amounts of

data processed during training [23], [38], [81]. While originally

training used single precision floating-point data and arithmetic,

more compact datatypes reduce overall data volumes and

computation costs (e.g., half precision floating-point FP16,

bfloat16 [26], [41], [73], dynamic floating-point [14], and

flexpoint [42]). Mixed-datatype methods further reduce costs by

performing many computations using lower cost representations

and few using higher cost ones [14], [21], [52], [56]. Other

methods use low precision arithmetic [16].

Regardless, training remains an exascale class problem and

further improvements are needed. We observe that during

training many ineffectual computations occur naturally and for

a variety of models. Table I lists the ones we study. Specifically,

the bulk of energy consumption during training is due to

the transfers and computations needed to perform multiply-

accumulate operations (MACs). We find that often one of the

operands in these MACs is zero, and hence these operations can

be safely eliminated as they do not affect the values produced

during training and thus convergence and final accuracy. We

find that for many networks many zeros naturally occur in the

activations during the forward and backward passes, and in

the gradients during the backward pass (see Section II-A for a

primer on training).

It is well-known that zero values and ineffectual operations

781

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00069

occur also during inference both in the weights and the

activations. While some zero weights appear naturally, their

occurrence can be greatly amplified through pruning [28], [29],

[30], [43]. Zero activations also occur naturally during inference

and are most frequent in models that use the Rectifier Linear

Unit (ReLU) activation function. This has led to many software

and hardware proposals for exploiting zeros, the presence of

which is referred to as sparsity [5], [11], [18], [25], [27],

[40], [48], [60], [79], [82]. Many designs target sparsity in

the weights, and some target sparsity in both activations and

weights [18], [40], [58], [60].

However, exploiting sparsity during training is more chal-

lenging than it is for inference. First, just because zeros occur

during inference does not imply they should also appear during

training. Training starts with some random initialization of the

weights, and proceeds to slowly adjust them until the network

converges. Eventually, some of the weights will become zeros,

but how fast this will occur is not known neither is whether

they will stay at zero. Second, the position of zero weights

during inference is known and does not change, hence the

sparsity pattern is static. As a result, for inference we can

pre-schedule the computation to best take advantage of the

sparsity in weights. This is not the case during training where

the weight values keep changing and hence the sparsity pattern

is dynamic. This pattern varies with every sample and batch in

the training dataset and also varies over time. Third, inference

involves two input tensors, the weights and the activations,

which are used in only one computation, typically a matrix-

matrix multiplication or a matrix-vector multiplication. Thus,

the two tensors can be laid out in memory in a way that serves

a specific access pattern facilitating data parallel, and thus

energy-efficient, fetching and execution. During training there

is a third tensor, the gradients, and each of the three tensors is

used in two different computations. Most challenging is that

the way a tensor is used in each of those two computations

is different. For example, during the forward pass, a different

set of weights contribute to an output than those during the

backward pass. This makes it hard to layout the values in

memory in a way that fits both computation needs; a layout that

fits the forward has to be “transposed” for the backward. Fourth,

most inference accelerators that exploit sparsity operate on

fixed-point values, whereas training typically requires floating

point values. The relative costs of operations is different and

may result in different tradeoffs.

When sparsity exists, it represents an opportunity for

improving performance and energy efficiency. To exploit this

opportunity, we develop a method that will achieve this

when sparsity exists, and also avoid hurting performance

and energy efficiency otherwise. We present TensorDash, a

run-time approach to eliminate ineffectual MACs using a

combination of an inexpensive hardware scheduler and a co-

designed sparse, low-cost data interconnect that are placed

just in front of the MAC units. TensorDash works with out-

of-the-box neural networks and requires no modification nor

any special annotations from the model developer. TensorDash

does not change the values nor the functional units in any way

and thus does not affect convergence nor accuracy.

TensorDash also extracts additional benefits from techniques

that perform network pruning and quantization during training.

The goal of pruning is to convert weight values to zero. Dy-

namic sparse reparameterization [54], sparse momentum [19],

eager pruning [78] and DropBack [24] are recent training-time

pruning methods that achieve high sparsity levels with minimal

or no effect on output accuracy. We study the interaction of

TensorDash with some of these methods. Quantization reduces

the data width that will be used during inference. During

training, quantization effectively clips what would otherwise

be values of low magnitude into zeros. Recent quantization

methods include PACT [13] and LQ-Nets [77]. TensorDash

would also benefit selective backpropagation methods which

backpropagate loss only for some of the neurons [68]. Unless

specialized hardware is developed, selective backpropagation

manifests as sparsity as it effectively converts a large number

of gradients into zeros.

Our contribution is that we propose TensorDash with the

following functionality and benefits:

• TensorDash exploits naturally occurring sparsity during

training which appears predominantly in the activations

and the gradients. Sparsity is exploited dynamically and

completely in hardware using a low-overhead hardware

scheduler to advance MAC operations in time (earlier

cycle) and space (another MAC unit) so that overall

computation finishes earlier. The scheduler makes no

assumptions about how sparsity is distributed so that it

can efficiently handle the dynamic sparsity patterns that

arise during training.

• TensorDash does not affect numerical fidelity. It only

eliminates MAC operations where at least one of the

inputs is zero.

• TensorDash is compatible with data-parallel processing

elements that perform multiple MAC operations all

accumulating into a single output and is compatible with

any dataflow for such processing elements.

• Benefits with TensorDash are amplified with training

algorithms that incorporate quantization or pruning.

• The core processing element TensorDash uses can be

configured to extract sparsity in one or both operands. For

training, we configure it to do so only on one side as this

proves sufficient.

We highlight the following experimental observations:

• When incorporated into an accelerator based on Tensorcore

(TC) processing units, TensorDash improves performance

by 1.95× and energy efficiency by 1.5× (1.8× for

compute units) on average over a set of deep learning

models covering a wide range of applications.

• Performance improvements with TensorDash remain stable

throughout the training process.

• The area overhead of TensorDash is 4.8% compared to

the TC baseline.

• For bfloat16 units, the area overhead of TensorDash is

still affordable at 6.5% compared to the baseline.

782

��
��

��
��

��
��

�

���

	��

���

��

���

���

���
��

��
��

��
	
�

��
�

��
��� ��� ��� ����	

Fig. 1: Potential speedup for exploiting dynamic sparsity during
training for each of the three convolutions.

• The cost vs. performance tradeoff with TensorDash is

better for wider processing units (16 MACs/cycle).

II. BACKGROUND AND MOTIVATION

For clarity we discuss convolutional layers only as their

dataflow is more challenging than other layers due to the use

of activation windows. However, our measurements include all

layers. During training, processing a layer i comprises three

main convolutions or operations:

forward pass : Ai+1 =Wi �Ai (1)

backward pass : Gi−1 = Gi �Wi (2)

backward pass : Gwi = Gi �Ai (3)

where Wi are the weights, Ai are the input activations, Ai+1 are

the output activations, Gi−1 are the input activation gradients,

Gi are the output activation gradients, and Gwi are the weight

gradients. The first convolution is done during the forward

pass to calculate the output activations of the layer while the

next two convolutions are done during the back-propagation

pass to calculate the input gradients and the weight gradients

respectively. Section II-A reviews these operations in more

detail. Prior works [38], [62] have demonstrated that the

activations of convolutional neural networks exhibit significant

sparsity during training and exploited this observation to

compress the zeros away off-chipThis section corroborates

these findings and shows what levels of sparsity exist in the

three operations. Our goal is to exploit sparsity to accelerate the

processing by eliminating the corresponding MAC operations.

We found that weights exhibit negligible sparsity during

training unless the training method incorporates pruning.

However, we observe considerable sparsity in the activations

and the output gradients. Thus, we consider exploiting the

sparsity of Ai and Gi in the first and the second convolutions

respectively. For the third convolution, we target sparsity in Gi

or Ai whichever is higher. This can be decided by measuring

the fraction of zeros in each tensor as it is being generated by

the previous layer. The mechanisms we propose can exploit

sparsity for both Gi and Ai simultaneously but we leave the

evaluation of this option for future work.

Fig. 1 reports the total potential work reduction and for

each of the three operations per model (see Section IV

for the methodology behind this and other experiments).

The forward propagation operation (A ×W) and the two

backward propagation operations (A×G) and (W ×G) each

performs roughly the same number of MACs. We report work

reduction as a speedup which we define as all MACs
remaining MACs

where

remaining MACs is the number of MAC operations left after

eliminating those where the targeted operand is zero. On

average across all models, the potential “speedup” for the

convolutions is nearly 2.6×. The least potential is exhibited

by the Neural Collaborative Filtering (NCF) recommendation

system but even there it is 1.7×. The potential can go as high as

5.6× for the natural language inference model SNLI. It is more

than 2.4× for the highly optimized SqueezeNet while being

2.2× for Facebook’s object detection and segmentation model

Detectron2. For BERT the potential is 2×. While ResNet50 is

originally a dense model, pruning techniques induce significant

sparsity raising the potential to 1.75×.

A. Training Basics

Deep neural networks are trained using a variant of the

gradient descent algorithm where training samples are run

through the network to find the prediction error (gradients)

relative to the corresponding labels (forward pass) and then

the gradients are back-propagated through the network layers

to update the network parameters (backward pass).

During the forward pass, A�W is applied in sequence from

the first to the last layer. At every layer it convolves the weights

with the input activations to produce the output activations to

be fed to the next layer. The output activations of the very last

layer are compared with the ground truth labels to generate

the gradients that will then be back-propagated to update the

weights throughout. During back-propagation the layers are

invoked in reverse order from the last to the first. Each layer

convolves its output gradients with the weights to produce

the input gradients to be fed to the preceding layer. The layer

also convolves its output gradients with its input activations to

calculate the weight gradients. The per layer weight gradients

are accumulated across the training samples within a mini-

batch and used to update the weights once per mini-batch, or

iteration, as described by Equation Eq. (10), where i is the

layer number, t is the iteration number, α is the learning rate,

and S is the mini-batch size.

Wt+1
i =Wt

i −α ∗

S

∑
s=0

Gws
i/S (10)

Table II describes the operations in more detail for a

convolutional layer and a fully-connected layer, which can

be treated as a special-case convolutional layer where all input

tensors are of equal size.

III. EXPLOITING SPARSITY: TRAINING VS. INFERENCE

A popular architecture for training are NVIDIA GPUs with

the Tensorcore extension (TCs) [2]. Thus, we assume the main

building block of our baseline accelerator to be Tensorcore-like

units mirroring the functionality of the NVIDIA Volta V100 [2].

The TC is designed to maximize computation throughput under

the data supply constraints of the existing memory datapath

and, as a result, the internal organization may vary per GPU

generation. A TC in V100 can perform a 4×4 floating-point

783

TABLE II: Training Process: Processing of one training sample.
Weights are updated per batch (see text). The notation used for acti-
vations, weights, activation gradients, weight gradients is respectively

A
S/L
c,x,y,W

L,F
c,x,y,G

S/L
c,x,y,Gw

S/L,F
c,x,y , where S refers to the training sample, L

refers to the network layer, F is the weight filter, c is the channel
number, and x,y are the 2D spatial coordinates. The stride is denoted
as st.

FORWARD PASS

Convolutional Layer: A sliding-window 3D convolution is performed

between the input activations and each of the weight filers to produce

one channel in the output activations:

A
S/i+1
oc,ox,oy =

C

∑
ci=0

Kx

∑
xi=0

Ky

∑
yi=0

A
S/i
ci,ox∗st+xi,oy∗st+yi ∗W

i,oc
ci,xi,yi (4)

Fully-Connected: Each filter produces one output activation:

A
S/i+1
oc =

C

∑
ci=0

A
S/i
ci ∗W

i,oc
ci (5)

BACKWARD PASS

INPUT GRADIENTS

Convolutional Layer: A sliding-window 3D convolution is performed

between a reshaped version of the filters with the activation gradients

from the subsequent layer. The filters are reconstructed channel-wise and

rotated by 180 degrees and the activation gradients are dilated by the

stride st.

G
S/i−1
oc,ox,oy =

F

∑
ci=0

Kx

∑
xi=0

Ky

∑
yi=0

G
S/i
ci,ox+xi,oy+yi ∗Wrotated

i,ci
oc,xi,yi (6)

Fully-Connected: The filters are reconstructed as above. No dilation

of the activation gradients.

G
S/i−1
oc =

F

∑
ci=0

G
S/i
ci ∗W i,ci

oc (7)

WEIGHT GRADIENTS

Convolutional Layer: The weight gradients are accumulated across

batch samples. Per sample, it is calculated as a 2D convolution between

the input activation and the output gradients which are dilated according

to the stride.

Gw
total/i, f
oc,ox,oy =

S

∑
si=0

Nox

∑
xi=0

Noy

∑
yi=0

G
si/i

f ,xi,yi ∗A
si/i

oc,ox+xi,oy+yi (8)

Fully-Connected: Each weight gradient is a scalar product of the input

activation and the gradient of the output activation it affects accumulated

over samples.

Gw
total/i, f
oc =

S

∑
si=0

G
si/i

f ∗A
si/i
oc (9)

matrix multiplication per cycle, i.e., 64 MACs per cycle. It

can be implemented as a tile of 4× 4 processing elements

(PEs) where each PE, as shown in Fig. 2, can perform 4

MACs/cycle all contributing to the same output. For example,

these could be four pairs of (activation, weight) all contributing

to the same output activation, or they could be four pairs

of (gradient, weight) all contributing to the same activation

gradient. Such processing elements are more energy efficient

A PAD

B
PAD

X
X

X
X
+ C

PAD

�������	
�����
���
��

Fig. 2: Baseline Processing Element. A Tensorcore is 4× 4 tile of
PEs.

vs. a single MAC unit because they amortize the energy cost of

updating the accumulator over several operations, and the cost

of the summation stage by fusing the MACs. Similar to TCs,

the PEs implement mixed-precision MAC arithmetic where

multiplication is done in FP16 while accumulation is performed

in FP32. The processing element has three local scratchpads,

two for inputs and one for output. An accelerator may use a grid

of these PEs each with separate scratchpads or it may organize

several of them in a tiled grid sharing the buffers to exploit

temporal and spatial reuse. While we assume mixed-precision

floating point values as in TCs, TensorDash is datatype-agnostic

and will work with any datatype, e.g., bfloat16 [41], fixed-point

or specialized narrow floating-point [72].

Let us refer to the two input streams as A and B while using

C to refer to the outputs. Figure 3a shows an example of how

16 value-pairs will be processed when we do not attempt to

eliminate those that are ineffectual (at least one of the two

input values is zero). For non-zero values, we denote the input

values as alane
time and blane

time, where lane designates the multiplier

they appear at, and time is the processing order. For zero

values, we just have 0. The figure shows that with the dense

schedule, when we process all pairs regardless of their value,

it is straightforward to arrange them in memory so that the PE

can read them as groups of four pairs from the input buffers

performing four MACs per cycle. The PE needs four cycles to

process them all.

In the example, however, there are only seven pairs, high-

lighted in black, where both operands are non-zeros. As long

as the PE processes these value pairs, the output will be correct.

To improve performance and to reduce energy, TensorDash’s

goal is to eliminate the ineffectual pairs by filling their positions

with effectual pairs. Ideally, our four MACs/cycle PE should

be able to process all effectual pairs in two cycles. However,

this requires moving pairs in tandem within both buffers in

time (earlier yet to the same lane) and in space-time (earlier

and to a different lane).

To exploit sparsity, we get some inspiration from past designs

that did so for inference alone [18], [27], [48], [58], [79], [82].

However, as we briefly discussed in the introduction, training is

a more challenging task necessitating a fundamentally different

approach and design. To appreciate the difference in both

challenges and solutions, we first review past approaches for

exploiting sparsity during inference.

Inference executes only the A�W convolution where the

weights and their sparsity pattern are known a priori . Second,

since there is only one convolution and one pass, a single

784

���
���

��
���

���
���

�

���
���

��

��
� ��

���
���

�

��
���

�

��
���

�

�

��
�

�

��
��

��
�

�

��
���

�

��

��
�

� �
��
����

� �
��
����

����

(a) Input Tensors

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�

��
�

��
�

��
�

��
�

��
���

�

��
� ��

�

��
�

��
�

��
�

��
�

��
�

��
�

�

�

����

(b) Unrestricted
Movement

Staging window

��������	

�����
	��

�����
��

(c) Sparse Interconnect

0a1
000

a0
1a1

1a2
1a3

1

0a1
2a2

20

a2
3 a0

3a1
3a3

3

b0
1b1

1

b1
0b2

0

0

b0
0

0

b0
20

b0
3

0

b2
1b3

1

00

b3
3

a time
lane

b time
lane

a1
0

b1
0

b0
1

a0
1

b1
1

a1
1

a0
3

b0
3

(d) Cycle 1

0a1
000

a0
1a1

1a2
1a3

1

0a1
2a2

20

a2
3 a0

3a1
3a3

3

b0
1b1

1

b1
0b2

0

0

b0
0

0

b0
20

b0
3

0

b2
1b3

1

00

b3
3

0a1
0

a0
1a1

1

0a1
2

a0
3a1

3

b0
1b1

1

b1
0 b0

0

0

b0
20

b0
3

a time
lane

b time
lane

0

0

b2
1

a2
1

b3
1

a3
1

a3
3

b3
3

(e) Cycle 2

Fig. 3: Example of exploiting sparsity dynamically. Allowing a restricted set of movements per multiplier is sufficient.

dataflow is sufficient so that we can arrange values in memory

in the order we wish to process them. The most challenging

layers are the convolutional ones, since they use sliding

windows in their activations. This means that weights will

have to be matched with different activations per window.

Fig. 3b shows an approach representative of several past designs

where the non-zero values from both sides were allowed to

independently move with no restriction both in time and space-

time [48], [58], [79]. The non-zero values in A are now tightly

packed one after the other in memory space, same for B. The

values belonging to the same pair are no longer aligned in

time nor in space. To avoid processing all ineffectual pairs, we

need to somehow identify those pairs where both values are

non-zero and make them meet at some multiplier. We would

also like to keep as many multipliers busy as possible. This

is a challenging task for two reasons: 1) Performing arbitrary

movement of values in time and space is expensive in hardware.

2) To keep the four multiplier lanes busy, we will often need

to take values from multiple rows from each buffer.

Cambricon is a representative example from a class of

designs that exploit sparsity only on the weight side [48].

Cambricon tightly packs the non-zero weights in memory

space, so that at runtime the PE can access them one row

at a time. Each weight is annotated with metadata so that

Cambricon can determine its dense (lane, time) position. A

unit maintaining a pool of activation candidates locates and

pairs each non-zero weight with its activation. This unit proved

to be expensive as it performs the function of a crossbar, so

that activations can mirror the arbitrary movement of weights

in memory space. Cambricon-X exploits sparsity on both sides

allowing weights and activations to freely move both in time

and space-time. An indexing module is tasked with matching

non-zero weights and activations [80]. Cambricon-S improves

efficiency by imposing structural constraints on how the model

is pruned [82]. Effectively, it eliminates ineffectual pairs only

if 16 of them appear together in a single row. These structural

constraints must be imposed during pruning. Cnvlutin2 [40]

and SparTen [25] exploit sparsity on both sides albeit by paying

the deployment cost for independent buffer banks per multiplier

input (both A and B). They support movement of values only in

time and hence cannot effectively handle work imbalance across

lanes where “Struggler” lanes become a bottleneck. SCNN

tightly packs non-zero weights and activations in memory and

processes only effectual pairs where both operands are not zero

at runtime. To do so, it processes values one channel at a time so

that the product of any weight with any activation is guaranteed

to contribute to an output activation assuming a stride of 1.

SCNN avoids all data movement at the input. However, it

does require a crossbar to route products to accumulator banks.

The crossbar and number of banks are over-provisioned to

avoid stalls due to bank conflicts which would otherwise be

significant. Bit-Tactical uses a low-cost sparse interconnect at

the front-end and a software scheduler to extract sparsity in the

weights of pruned models without imposing any restrictions

on how sparsity is structured [18]. On the activation side, it

targets sparsity within values (bit-level sparsity) and for that it

uses shift-and-add multiplier-based MAC units. MASR extracts

sparsity from both weights and activations using an efficient-

vector based encoding in memory [27]. It targets recurrent

neural networks and operates on fixed-point values.

None of the above approaches has been applied in training.

We highlight the following major challenges that were not

addressed by past approaches: 1) The sparsity pattern during

training is always dynamic. During inference, however, the

weights are statically known and, as a result, they can be pre-

packed in memory after eliminating zero weights. 2) During

training, each tensor participates in two convolutions or

operations. The group of values that contribute to an output

in each convolution is different, and so must be the order

in which they are arranged as we show in Section II-A. For

example, the filter channels during the forward pass are different

from those of the “reconstructed” filters during the backward

pass. The “reconstructed” filters during the backward pass are

formed by taking the weights from the same channel across

all filters, stacking those along the channel dimension and

then spatially rotating the filter by 180 degrees. Similarly,

the gradients need to be bundled together differently for the

second convolution than the third. These two convolutions

785

are calculated per layer during the backward pass where we

would like to avoid having to spill the gradients off-chip. Thus,

there is no single way to pack them in memory (effectively

pre-scheduling them) that would work for all cases where

they are used. 3) Activations can be discarded after each layer

during inference which is not the case during training where

they are saved to be used by the backward pass. 4) Inference

accelerators use narrow fixed-point arithmetic (e.g., 8b) whereas

training today is done predominantly using floating-point, e.g.,

FP32, FP16, or Bfloat16. Floating-point values are typically

wider making crossbars more expensive, and performing shift-

and-add operations to extract bit-level sparsity is non-trivial

for floating point. 5) Training starts with randomly initialized

values that keep evolving throughout the training process.

To take advantage of a dynamic sparsity pattern that may

appear in any or all the three tensors, we chose to target a

solution that can dynamically eliminate ineffectual value pairs

at runtime from all the three convolutions, or operations, in

DNN training. For this solution to be energy efficient we

would like to avoid the high hardware cost of an exhaustive

interconnect that enables arbitrary moves of the operands as

well as the energy and the latency cost of rearranging tensors

in different ways to suite the different operations.

A. TensorDash

This section explains how TensorDash removes ineffectual

value pairs when processing the example input tensors of Fig-

ure 3 and presents the hardware architecture of the TensorDash

extension. This discussion presents TensorDash as an extension

of Tensorcore-like processing units that perform 4 MACs per

cycle. TensorDash can be used to extend any data-parallel unit.

Section IV considers units of width up to 16 MAC and shows

that the relative cost vs. performance benefits with TensorDash

improve for wider units. Let us assume that we are processing

the 3D convolution of two input tensors A and B and that our

processing elements perform 4 MAC operations concurrently

just like in Tensorcore units.

Figure 4 shows that TensorDash extends the TC with the

following components: a) Staging buffers for A and B where

the depth of each staging buffer is a design time parameter.

For clarity, let us assume that this depth is 2, that is each

staging buffer can hold up to two rows of values. Writes to

these staging buffers are row-wide. There are four single-value-

wide read ports each feeding directly to a multiplier input.

As Fig. 3c shows, the connectivity per read port is sparse: each

port can read one out of a limited set of values, four in our

example, within the staging buffer. The set of values that each

port can read out is different, but can overlap. A staging buffer

is implemented as an array of registers with as many row-wide

write ports as the number of rows it can hold. Each read port

is implemented as a multiplexer with a sparse connectivity to a

subset of the buffer registers. b) There is a hardware scheduler

that accepts a bit vector from each staging buffer identifying

which values are non-zero. For 2-deep staging buffers, the

bit vectors would be 8b wide for our example. Each cycle

the scheduler selects up to 4 effectual pairs from the staging

buffers. It generates the control signals for the read ports, 2b

per port for our example, so that the corresponding values

are read out. The same control signal is shared among the

corresponding ports in the two staging buffers, i.e., the same

control signal goes to port p in the horizontal and vertical

staging buffers so that operands from both move in tandem

(4x2b control signals in total).

Figure 3c illustrates how TensorDash can effectively exploit

sparsity even though it allows only a limited set of value

movements per lane. There are two types of movement: in time

only or lookahead, and in space-time or lookaside. The figure

shows the set of possible movements for the third multiplier

lane: it can either process the original dense value a2
0, the next

value in the same lane a2
1 (lookahead), or it can steal a value

from a step ahead in time from one of its two neighboring lanes

a1
1 or a3

1 (lookaside). The movements possible by the other read

ports are structurally identical relatively to their lanes and the

ports are treated as if they are arranged into a ring with port

0 being adjacent to port 3. Each port can access a different

set of values, however, these sets may overlap. Figures 3d

and 3e show how TensorDash reduces processing time to the

minimum two cycles using just a four-input multiplexer per

multiplier input.

To improve performance, the staging buffers will need to be

kept full as much as possible. For peak capability, an N-deep

staging buffer needs N row-wide write ports, one per row (to

enable filling it at once whenever it is drained in one cycle).

The A and B scratchpads will have to be banked accordingly

to sustain the higher read throughput needed when multiple

rows are drained out of the staging buffers at once. For our

example, dual-banked scratchpads are sufficient. In general,

having as many banks as lookahead is more than enough and

we found empirically that a lookahead of three is more than

sufficient for TC-like units. For wider units with more MACs,

even 2 lookahead is enough. We describe our PE configuration

and the hardware scheduler next.

The Hardware Scheduler: Each PE in a Tensorcore accepts

four pairs (A,B) of FP16 values and performs four MACs

per cycle. In our preferred configuration, TensorDash adds a

4-deep staging buffer on each input side. As Fig. 5 shows,

the staging buffer can hold four rows, each is 4-value wide,

corresponding to the dense schedule for the current step (step

+0) and the next three in time (+1, +2 and +3). For every lane

there is a multiplexer which implements a sparse connectivity

pattern. The figure shows the connections for lane 1. Besides the

original “dense” schedule value, there are three lookahead and

four lookaside options per input. For example, the multiplier for

lane #1 can be given the value at lane 1 from the current time

slot or up to 3 ahead. Alternatively, it can “steal” the values

from neighboring lanes. For example, it can get the value from

lane 2 that is one time step ahead or the value from lane 3 that

is two steps ahead. Each lane has the same connectivity pattern

which is shifted relative to its position (wrapping around the

side edges). Each staging buffer also generates a 4x4b bit

vector (using per value comparators), denoted as ZA and ZB

for the A and B staging buffers respectively, indicating which

786

of their values are zero.

The scheduler accepts the two bit vectors ZA and ZB from

the A and B staging buffers and generates two sets of signals.

The first set is four MSi, i=0...3 3b signals, one per input

lane. These are used as the select signals for the per lane

multiplexers. There is one MSi signal per multiplier, and it is

used by the multiplexers on both the A and B sides of that

lane. The scheduler also produces a 2b AS signal that indicates

how many rows of the staging buffer it has been able to drain,

so that they can be replenished from the scratchpads which

are banked to keep the buffers full.

The rest of this section describes the scheduler block. The

ZA and ZB 4x4b bit vectors are first bit-wise ORed to produce

a 4x4b bit vector Z. It indicates which pairs of (A,B) values

have at least one zero. These pairs are ineffectual and can be

skipped. The scheduler’s goal is to select a movement per lane,

for a total of 4 movements (MSi signals) so that it processes

as many of the remaining effectual (A,B) pairs as possible in

one step. We will refer to the selection of movements that the

scheduler makes for one step as a schedule.

For each lane i the scheduler uses a simple static priority

scheme: among the eight options select the first available in the

following order (notation is (step,lane) refer to Fig. 5): (+0,i)

(dense schedule), (+1,i) lookahead 1 step, (+2,i) lookahead 2

steps, (+3,i) lookahead 3 steps, and then the lookaside options:

(+1,i+1), (+1,i-1), (+2,i+2) and (+3,i+3). The scheduler uses

an 8b-to-3b priority encoder per lane. Each priority encoder

operates on an 8b subset of Z, corresponding to the candidate

options for its lane, picks the first effectual option according

to the aforementioned priority scheme, and produces the 3b

MSi signal. However, having all lanes make their selections

independently may yield an invalid schedule; the same pair

may be chosen by multiple lanes and end up being multiplied

and accumulated more than once.

To ensure that the scheduler always produces a valid

schedule, one where each value pair is selected once, we

use a hierarchical scheme where scheduling is done in 4 levels

as shown in Fig. 6. In each level, exactly one lane makes

its decision independently using the current value of the Z

vector as input. Given the promotion connectivity in Fig. 5,

one lane per level is necessary to guarantee by design that

lanes will not make overlapping choices. After a lane makes

it selection it “removes” this options (OR gate) from the Z

vector before passing it to the next level. Generating the AS

signal is straightforward given the bits that are left in Z at the

end. While we have described the above process in steps, the

scheduler is combinatorial and operates in a single cycle.

Composing TensorDash Cores: So far we have described a

single TensorDash processing element (PE) which can exploit

sparsity on both operands. A Tensorcore can be implemented

as a 4× 4 tile of such PEs. While a PE can exploit reuse

only temporally, spatial data reuse is also possible by having

the PEs along the same row share the same B input and PEs

along the same column share the same A input. For example,

during the forward pass and for a convolutional layer, each

row can be processing a different filter, whereas columns can

be processing different windows. In this arrangement, each PE

would be processing a unique combination of B and A inputs.

Skipping zeros on both A and B sides remains possible if we

use per PE schedulers and staging buffers.

We opt for extracting sparsity from only the B side since there

is sufficient sparsity in one of the operands in each of the three

major operations to extract significant benefits. Figure 7 shows

a simplified core with 2×2 tile configuration. Each row of PEs

uses a common scheduler and shares the same staging buffer

and multiplexer block on the B side. For the A side, we use a

single staging buffer per column and a dedicated multiplexer

block per PE. The A-side multiplexer blocks per row share the

same MSi signal from the row scheduler. Each scheduler now

need to see only the Z vector from the corresponding B-side

staging buffer. Under this tiling configuration, synchronization

between rows of PEs has to be enforced where all rows have

to wait for the row with the longest B-side schedule. This is to

ensure all rows advance in tandem to the next set of values on

the A-side. For example, assuming 3-deep staging buffers and

2×2 tile configuration, if row 0 scheduled the 3 time steps

of its staging buffer in 2 processing cycles but row 1 did so

in 1 cycle, row 1 has to stall waiting for row 0 before they

both advance to the next set of values on the A-side. We study

the effect of synchronization in Section IV-D. The designs we

evaluate for both TensorDash and the baseline use Tensorcore

(4×4 tile of PEs) as the main building block.

Tensor Layout and Transposing: During training, each tensor

is used in two the three major computations. For example, the

weights in the forward pass are convolved with the activations

whereas in the backward pass they are convolved with the

output gradients. In each operation the group of weights that

contribute to an output value is different. This is true for the

weights, activations and gradients. This has implications for

the memory hierarchy which needs to supply the data in an

appropriate order to the PEs. When a tensor is used in only

one way it is possible to statically layout its values in memory

so that they can be easily served using wide accesses off- and

on-chip. However, during training the layout that serves well

one of the computations will not be able to serve well the

other. Fortunately, it is possible to arrange values in memory

so that they can be easily fetched for all use cases. The key

is the ability to transpose tensors as needed. For this purpose,

we use a tensor layout where values are stored in groups of

4x4 values. The group is formed by taking four blocks of

values adjacent along the X dimension. Each of these blocks

contains four consecutive values along the channel dimension.

The starting coordinates for each 4x4 value group are aligned

by four along the X and the channel dimensions. Finally, the

groups constituting a tensor are allocated in memory space in

channel, Y , X order.

When fetching values from off-chip, each group can be

written directly to the multi-bank on-chip memories so that

each 4-value block is copied directly to a bank. As a result, the

PE can now directly access any block of 4 values consecutive

along the channel dimension in a single step. When transposing

is needed, we use on-chip transposers between the on-chip

787

A PAD

X
X

X
X
+ C

PAD

Staging

St
ag

in
g B

PAD

��������	

������������
���������	����

Fig. 4: TensorDash Processing El-
ement.

0 1 2 3

+0

+1

+2

st
ep

lane

St
ag

in
g

bu
ffe

r

MS1

From scratchpad

To multiplier

� ����

+3

Fig. 5: Staging buffer connectivity
for lane #1.

������� MS0
�

Z
� � �

� � �

������� � MS3

�
��

�
��
��
��

���
	�

�
��
��

�
�� �� �� ��

� � �

�� ��!�����" AS�

��
�

�

�

Fig. 6: TensorDash’s Scheduler.

�����

�����

�����

�����

�
#��$

�
#

���	��	

�

#

��$

����
�	
��
	

�

#

��
�	
��
	

�
#

�
#

���	��	

�

���

���

�� ��� �� ���

� �
��

�
� �

��
�

�

��

%�

Fig. 7: 2x2 TensorDash Tile.

memory banks and the tile scratchpads. The number of

transposers is chosen so that the memory system can keep

the tiles busy. Each transposer reads four 4-value blocks from

their banks using 4-value wide accesses and copies those into

its internal 4x4 buffer. The transposer then can provide four

blocks of four values each composed of a single value from

each of the four original blocks read from memory effectively

transposing the tensor. For example, it can supply a block

comprising all values that appear first within their original

block, or all that appeared third. This transpose scheme is

sufficient to serve well all the three computation operations

involved during training.

IV. EVALUATION

DNN models: As shown in Table I, we evaluate Ten-

sorDash on state-of-the-art DNN models covering a wide

range of applications: 1) image classification trained on Ima-

geNet [63]: SqueezeNet [37], VGG [65] and ResNet-50 [32],

2) scene understanding: img2txt [70] trained on Microsoft

COCO dataset [47], 3) natural language modeling: including

BERT [20] the Transformer-based model from Google trained

on the GLUE dataset [71] and SNLI which is trained on the

Stanford Natural Language Inference corpus [7], 4) object detec-

tion and segmentation: Facebook’s Detectron2 model trained

on Microsoft COCO dataset [47], and 5) recommendation

system: Neural Collaborative Filtering (NCF) [33] trained on

the MovieLens 20M movie ratings dataset [1]. To show how

TensorDash benefits from techniques that incorporate pruning

during training of dense models, we trained two variants of

ResNet-50 following: 1) the dynamic sparse re-parameterization

technique of Hesham et al. [55], and 2) the sparse momentum

technique of Dettmers et al. [19]. For both techniques we target

90% sparsity. We show results only for the latter technique

due to space limitations.

Collecting Traces: We trained all models on an RTX 2080 Ti

GPU using the PyTorch implementations as released by the

original authors. We trained each model for as many epochs as

needed for it to converge to its best reported output accuracy.

For each epoch, we sampled one randomly selected batch and

traced the operands of the three operations shown in Eqs. (1)

to (3). The batch size is different per model due to their different

TensorDash and Tensorcore-based Baseline

of TCs 256 AM SRAM 128KB×64 Banks

TC core 4×4 PEs BM SRAM 128KB×64 Banks

PE MACs/Cycle 4 CM SRAM 128KB×64 Banks

Staging Buff Depth 4 Scratchpads 256KB total

Tech Node 65nm Frequency 500 MHz

Off-Chip Memory 16GB 4-channel LPDDR4-3200

Peak FLOPS 16.4 TFLOPS

TABLE III: Tensorcore baseline and TensorDash-enhanced configura-
tions.

GPU memory requirements. It ranges from as low as 64 and

up to 143 samples per batch.

Accelerator Modeling: We developed a custom cycle-accurate

simulator to model performance. We have performed extensive

microbenchmark stress tests to validate the fidelity of the

simulator and we plan to release it. Table III lists the default

configurations for the Tensorcore-based baseline including the

TensorDash extension. To model area and power consumption,

all designs were implemented in Verilog, synthesized via

the Synopsys Design Compiler and layout was produced

via Cadence Innovus and for a 65nm TSMC technology

which is the best that is available to us due to licensing

restrictions. Power was estimated by capturing circuit activity

via Mentor Graphics’ ModelSim which was then passed on to

Innovus. CACTI [36] was used to model the area and energy

consumption of the on-chip shared SRAM memories which are

divided into three heavily banked chunks: AM, BM, and CM.

We used CACTI also to model the area and energy consumption

of the SRAM scratchpads (SPs). Finally, energy and latency

for off-chip accesses were modelled via Micron’s DRAM

model [53]. Both the baseline and TensorDash architectures

compress zero values off-chip using the CompressingDMA

method [62].

A. Performance

Fig. 8 reports the speedup achieved by incorporating Ten-

sorDash in the Tensorcore architecture for each model and

for each of the three operations: (i) A�W , (ii) A�G, and (iii)

W �G. Since the amount of sparsity and its pattern in each of

the tensors differ across models, layers, and training phase, the

speedup varies. On average, TensorDash accelerates execution

by 1.95× and never introduces any slowdown.

TensorDash benefits all models. The benefits for BERT

and Dtctron2 come from their backward pass only. Dtcron2

788

���

	��

���

��

���

���

��
��

�
�

��� ��� ��� ����	

Fig. 8: Speedup of TensorDash over the baseline architecture.

consists of:1) a pretrained ResNet-50 backbone, 2) a feature

pyramid network (FPN) [46] that extracts high-level semantic

feature maps at different scales, 3) a region proposal network

(RPN) [31] that proposes candidate object bounding boxes,

4) a network head performing bounding-box recognition,

classification, and regression, and 5) a network head for

mask prediction that is applied separately to each region of

interest. The two front-end convolution layers of the FPN and

RPN, which dominate the execution time, show negligible

input activation sparsity. However, the use of ReLU directly

after these dominating layers results in significant (73%-94%)

sparsity in the gradients for these layers that TensorDash

exploits during the backward pass. BERT is dominated by

fully-connected-like layers which exhibit little sparsity in their

weights and activations. But, despite not using ReLU, we see

sparsity in its gradients during the backward pass where the

attention mechanism of its encoder and decoder layers results

in roughly 60% sparsity in the gradients for most of the layers.

ResNet-50, VGG16, and SQZNet are among the models that

use ReLU and thus benefit from the sparsity it generates. In

ResNet-50 the benefits are lower during the backward pass.

This is predominantly caused by the use of batch normalization

(BatchNorm) layers between each convolutional layer and the

subsequent ReLU layer. A BatchNorm layer absorbs almost

all the sparsity in the gradients. Fortunately, however, there

is still sparsity in either the activations or the weights which

TensorDash exploits. The use of in-training pruning creates

considerable sparsity in the weights, especially for the smaller

back-end layers, which TensorDash capitalizes on during the

W �G operation.

SNLI performs natural language inference task through

recognizing textual entailment between pairs of human-written

English sentences. It includes two fully connected (FC) pro-

jections layers, two LSTM encoders, and four fully connected

classifier layers. We observe significant sparsity in the gradients

and activations which explains the observed benefits with

TensorDash. The gradients exhibit more than 95% sparsity

due to the nature of the task and the use of ReLU activations.

Input activation sparsity is 63% and 60% for the two front-end

projection layers, 0% for the first classification layer, and over

94% for other layers.

The NCF recommendation system consists of four FC layers

with the first layer being the largest. The gradients are 83%

sparse which benefits the W � G operation. However, this

operation is not performed for the first layer which is the

���

���

	��

	��

���

���

��

��

���

�� 	�� ���
�� ��� ��� ��� ��� ��� ��� 	���

��
��

�
�

��
�
�

��
�	

��
�

��������
��������

���� �������� ���!�� "##	�

�$��%� !&' �!() �*!���,�

Fig. 9: Speedup with TensorDash as training progresses.

most expensive and that also exhibits no activations sparsity.

B. Speedup Over Time

Fig. 9 shows execution time speedup with TensorDash during

training from the first epoch up until convergence. Generally,

improvements with TensorDash are fairly stable throughout

the entire training process which suggests that the underlying

phenomena that TensorDash exploits are neither transient nor

caused by initialization.

The measurements reveal two trends. For ResNet50 which

uses a in-training pruning method, speedups are slightly higher

during the first few epochs, and then reduce and stabilize at

around 1.5×. Similar, albeit slightly more subdued behavior

is seen for the other dynamic sparse re-parameterization

technique [55]. This behavior is due to the pruning algorithm

which starts by aggressively pruning many weights at the

beginning which the training process then “reclaims” to recover

the accuracy of the model.

For the dense image classification models, where most of the

sparsity that TensorDash exploits originates from the activations

and the gradients, the speedup tends to follow an overturned

U-shape curve. This behavior is more pronounced for VGG16

model where the benefits are initially lower due to the random

initialization of the model. Then benefits rapidly increase during

the first few epochs as the model is quickly improving by

learning what features of the input data are irrelevant for the

task. This translates to rapid increases in sparsity in both the

activations and the gradients. The speedup then stabilizes until

40%−50% of the training process is reached. It then gradually

decreases as we enter the second half of the training process

where the model starts to extract some of the less-important

previously discarded features to improve accuracy. During the

final quarter of the training process, the speedup stabilizes as

the model parameters are very close to their final values and

thus the sparsity of the activations and gradients stabilizes.

Rhu et al. have made similar observations when studying

sparsity during training for the purpose of compressing data

off-chip [62].

C. Area Overhead and Energy Efficiency

Table IV reports a breakdown of the area and power. Even

without taking the on- and off-chip memories into account,

the area and power overhead of TensorDash is small; only

789

TABLE IV: Area and power consumption breakdown of TensorDash
vs. baseline TC. On-chip memory and scratchpads are not included.

Area (mm2) Power (mW)

TensorDash Baseline TensorDash Baseline

Compute Cores 68.74 23,748

Transposers 0.37 44.4

Schedulers+B-Side

MUXes

1.37 - 187.9 -

A-Side MUXes 3.63 - 283.8 -

Staging Buffers 4.91 - 1,638.4 -

Total 79.01 69.11 26,144 23,793

Normalized 1.14× 1× 1.09× 1×

Overall Energy Efficiency 1.5× 1×

0.0
0.5
1.0
1.5
2.0
2.5
3.0

vs
. B

as
el

in
e

TC
s

Core Energy Effic. Overall Energy Effic.

Fig. 10: Energy efficiency of TensorDash over the baseline.

14% extra silicon area and 9% more power are needed for the

schedulers, staging buffers, and the back-end shuffling MUXs.

Given the speedup with TensorDash, the compute logic alone

becomes on average 1.8× more energy efficient compared

to the plain Tensorcore. Fig. 10 reports per model energy

efficiency for the compute logic and the whole chip.

Each of the on-chip AM, BM and CM memory chunks

require 58.6 mm2 of area whereas the scratchpads require a total

of 3.95 mm2 for the baseline and 5.9 mm2 for TensorDash due

to more banking. In total, when considering both the compute

and memory area of the whole chip, the area overhead of

TensorDash stands at only 4.8%. As Fig. 10 shows, when we

take the accesses to the on-chip memories, the scratchpads,

and the off-chip DRAM into account, introducing TensorDash

improves the overall energy efficiency of the Tensorcore

architecture by 1.5×.

Fig. 11 reports the energy consumed with TensorDash

relative to the baseline. The measurements also show a

breakdown of the energy consumed across the three main

components: the off-chip data transfers, core logic, and the

on-chip memory modules. TensorDash significantly reduces

the energy consumption of the compute cores which dominates

the energy consumption of the system.

0

20

40

60

80

100

TD TC TD TC TD TC TD TC TD TC TD TC TD TC TD TC

BERT Dtctron2 SQZNet VGG16 img2txt NCF SNLI RsNt50_S

N
or

m
al

iz
ed

 E
ne

rg
y

% DRAM Core SRAM

Fig. 11: Energy consumption breakdown of TensorDash normalized
to the Baseline: off-chip DRAM, compute logic and on-chip SRAM.

���
	��
���

��
���

��
��

�
�

��!��� ��!��� "�!��� #�!���

Fig. 12: TensorDash speedup with staging buffer depth.

D. Analysis

• Staging Buffer Depth/Lookahead: The depth of the staging

buffers dictates the theoretical peak speedup since it limits the

maximum number of time steps that can be skipped at once.

For an N-deep buffer the maximum speedup is N×. To study

the effect of depth configurations on performance, we sweep

depths from 2 up to 5. The 2-deep and 3-deep configurations

implement four possible promotions per lane instead of eight for

a more balanced implementation cost vs. performance. Fig. 12

shows that the average speedup grows from 1.5× (2-deep) to

2.05× (5-deep). The returns tapering off from 4-deep to 5-deep

does not justifying the extra cost.

The staging buffer depth can be decided by taking two

factors into account: 1) hardware overhead: deeper buffers are

more expensive, demand more scratchpad banks and wider

MUXes per multiplier lane to reasonably cover the additional

candidate values. 2) PE lane width: that is, the number of

multiplier lanes per PE. On one side, for wider baseline PEs

we expect deeper staging to be less effective due to the lower

probability to empty multiple time steps for all lanes. On the

other side, this is balanced by better-spread, less overlapping,

and higher pattern coverage across the lanes with wider PEs.

This improves the chances of more effective promotions and,

thus, to skip more steps. This trade-off is illustrated in the

following Tile Geometry: Wider PE study.

• Tile Geometry: We study the performance behavior of

the TensorDash PE when it is used to compose tiles. For this

purpose, we vary the number of PE rows and columns per tile

and study how this affects performance. As the tile geometry

scales, stalls may occur due to inter-PE synchronization which

in turn is caused by work imbalance.

Rows: Fig. 13 shows how the performance of TensorDash

changes as the number of rows per tile varies from 1 and up

to 16 while the number of columns is fixed at 4. The average

speedup decreases from 2.2× for a tile with 1 row to 1.8×
when the tile has 16 rows. Since all PEs have to wait for the

slowest one, the more rows the more frequent stalls due to

work imbalance will occur. As we scale up the number of rows

per tile, value density imbalance across rows increases leading

to more stalls where all rows have to wait for the row with the

densest value stream. The main reason why this occurs is that

the non-zero activations and gradients tend to cluster in certain

2D feature maps whereas the other 2D maps become more

sparse. This clustering phenomenon is fundamental in such

models especially towards the deeper layers where each filter

is trained to extract specific high level features. However, as

the results show, TensorDash tackles row imbalance reasonably

well. Lookaside is effective in spreading work from what

790

���

	��

���

��

���
��

��

�

�
�$�& �$�&� "$�&� '$�&� �($�&�

Fig. 13: TensorDash speedup vs. number of PE rows.

0.0

1.0

2.0

3.0

4.0

Sp
ee

du
p

AxW AxG WxG Total

Fig. 14: Speedup of TensorDash with wider 16-MAC PEs and 3-deep
staging buffers over a similarly configured baseline.

would otherwise be “struggler” lanes. This phenomenon is

more pronounced for A×G, the second backward convolution,

where the 2D feature maps of the activations and the gradients

are convolved.

Columns: We vary the number of columns per Tensorcore

from 4 to 16 while keeping the number of rows at 4. Since we

exploit sparsity only on the row side, increasing the number of

columns does not affect performance as much compared to an

equivalently scaled baseline. All rows still have to wait for the

row with the densest stream. However, increasing the columns

allows us to process more windows in parallel in convolutional

layers while sharing the same schedule along the rows. We

noticed a negligible drop in the speedup of some models that

does not exceed 3% and is predominantly due to fragmentation

caused by layer dimensions.

Wider Processing Elements: We experiment with wider

Tensorcore configurations that have more multiplier lanes. We

study a TensorDash design that still allowed only 8 promotions

per lane. We found that a wider Tensorcore performs well

even with shallower staging buffers and thus less hardware

overhead. It achieves almost the same performance and energy

efficiency as the narrow Tensorcore with 4-deep buffers. Fig. 14

shows that TensorDash with 3-deep staging buffers on top

of 16-wide PEs improves performance on average by 1.85×.

Meanwhile, the area overhead is reduced to 10% and 3.5%

for the compute logic and the whole chip respectively. As

a result of the sparse connectivity pattern used, lanes with

non-overlapping connectivity patterns could be grouped for

scheduling in one level which permits a scheduler with just 6

levels and that is not in the critical path.

• Connectivity Pattern: We have experimented with tens

of connectivity patterns and found that as long as there

are enough lookaside options, the specific patterns does not

affect performance significantly (±5% relative performance

differences). Intuitively, the pattern should be selected such

that: 1) there is a balance between the number of lookahead and

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 99.0 99.9 100.0

X
vs

. B
as

el
in

e

Sparsity %

Speedup Core Energy Effic. Overall Energy Effic.

Fig. 15: TensorDash speedup for randomly sparse tensors.

lookaside options given a specific MUX width, and 2) lookaside

options are spread across the future steps of the neighboring

lanes. The robustness of our chosen connectivity paterns

is further demonstrated by the following experiment where

we demonstrate TensorDash’s effectiveness with synthetically

generated random tensors.

• Effect of Tensor Sparsity: To determine whether Tensor-

Dash remains effective regardless of the sparsity structure, we

experimented with synthetically generated sparse tensors with

sparsity levels ranging from 10% up to 99.99%. We used the

architecture of the third convolution layer from SQZNet but

populated the tensors using randomly generated values. For

each level of sparsity, we generated 10 tensor samples. We

then performed all three operations for each sample using

these generated tensors. We report the average across all

samples for each sparsity level (the maximum deviation in

measured speed was below 5%). Recall that given the 4-

deep staging buffers we use, the maximum possible speedup

with TensorDash even if the tensor contains only zeros is

4×. As Fig. 15 shows, performance and energy efficiency

with TensorDash closely follows the amount of sparsity in

the input. The figure shows that when the ideal speedup is

below 4×, TensorDash comes close to what is ideally possible.

For example, with 20% sparsity, an optimal machine would

be 1.25× faster. TensorDash is approximately 1.23× faster.

For 90% sparsity, an ideal machine would be 10× faster. The

experiment shows that TensorDash comes close to its ideal

4× speedup being 3.7× faster and reaching to 3.99× for the

99% sparsity level. Core energy efficiency closely follows the

speedup, however within a narrower envelop due to the 9%

power overhead of TensorDash components. For the highest

sparsity level we study 99.99%, the maximum possible core

energy efficiency is saturating at (max possible speedup/core

power overhead) = 4/1.09 = 3.67. Overall energy efficiency

is predominantly a function of layer dimensions which dictate

memory transfers to/from on-chip SRAM and off-chip DRAM.

Overall energy efficiency follows a similar trend but saturates

at 2.1×.

• Training with Bfloat16: Recent work showed that deep

neural networks could be trained using other floating-point

data types such as bfloat16 [26], [41], [73]. We implemented

TensorDash and baseline configurations that use bfloat16

arithmetic. Even when we consider only the compute logic,

our synthesis and layout results show that the area and power

overheads of TensorDash remain low at 1.16× and 1.1×
respectively. The various components scale differently as the

791

data type changes. For example, while hardware overhead of

the scheduler and shufflers does not change when we go from

FP16 to bfloat16, the multipliers shrink. When the on-chip

memory structures are taken into account, the area overhead

is 4.9%. In terms of energy efficiency, the compute logic with

TensorDash is on average 1.76× more energy efficient than

the baseline. When accesses to the on-chip and the off-chip

memory are taken into account, introducing TensorDash boosts

overall energy efficiency by 1.48×.

• A Model with Virtually No Sparsity: We experimented

with GCN [15], a natural language processing model which

we trained on the Wikitext-2 dataset [51]. It exhibits virtually

no sparsity in the activations, gradients, and weights. Still,

TensorDash improves performance by 1% since a few layers

exhibit about 5% sparsity. TensorDash overall energy efficiency

is 0.5% lower than the baseline.

V. RELATED WORK

The architecture of choice for training has been the graphics

processor. Neural networks and GPUs have evolved almost

symbiotically during the last few years with GPUs introducing

features to aid inference and training [8]. XeonPhi is another

architecture that is well suited to this type of data-parallel

workload [61]. Scaledeep is a scalable architecture for training

that utilizes heterogeneous tiles and chips, an optimized network

topology, low-overhead hardware-assisted synchronization, and

optimized model partitioning [69]. DaDianNao, one of the

earliest accelerator architectures targeting primarily inference

whose tiles, however, could be fused to support 32b arithmetic

for training [12]. Newer versions of the TPU also support

training [39]. Plasticine does not target machine learning

exclusively but a wide set of parallel computation patterns

which include those needed for stochastic gradient descent [59].

Caterpillar provides hierarchical support for collective com-

munication semantics to provides the flexibility needed to

efficiently train various networks with both stochastic and

batched gradient descent-based techniques [44]. NXT is a near-

memory accelerator comprising several general purpose cores

and specialized co-processors targeting both inference and

training [64]. Intel’s NNP-T (Spring Crest) supports both FP32

and FP16 [76]. Cerebras’ Wafer Scale Engine includes hundreds

of thousands of Sparse Linear Algebra (SLA) Cores able to

filter computation with zeros. In their dataflow architecture,

computation is only triggered when a non-zero data is received

by the SLA core [9].

Bit-Tactical uses a software scheduler plus a sparse in-

terconnect to exploit the static sparsity in the weights of

pruned models during inference [18]. For training, however,

the dynamic nature of sparsity makes this approach imprac-

tical. The overhead of invoking a software scheduler per

layer/sample/convolution is prohibitive in terms of latency

and energy. Moreover, bundling the weights in a specific order,

pre-scheduling these bundles and packing them in memory is

possible for inference since the weights are being used only

in the forward pass where the weights and activations are

accessed in one specific order. Unfortunately, during training

each tensor is accessed in two different orders across the three

convolutions.

TensorDash is a plug-and-play element that exploits dynamic

sparsity and can be used to compose processing tiles. As such

it is not meant as a competitor for the overall accelerator

architecture. That said, in every case there will be several

considerations that need close attention and evaluation.

Sparse tensor operations appear in many application domains

and specialized hardware designs have been receiving constant

attention as exemplified by recent proposals [34], [57]. Com-

pared to other application domains, neural network training

in general encounters tensors of comparatively low sparsity

whose pattern is not known in advance.

VI. CONCLUSION

TensorDash is a low-level processing element for building

accelerators for the datacenter and the “edge”. There is an ever

increasing body of work for accelerating training in software,

hardware or both. While TensorDash will interact with several

of these methods, it is at first-order complementary with many

since it operates at the very low-level of the MAC units.

While here we studied TensorDash for training acceleration,

it can also be used for inference acceleration. In addition,

while in this work we did not pre-schedule the input tensors in

memory, it is possible to do further reducing memory footprint,

traffic, and energy during training and inference [49]. Pre-

scheduled tensors can first be expanded from the pre-scheduled

form to their corresponding “dense” form in the staging buffers.

This is implemented using a sparse interconnect that mirrors

the interconnect TensorDash used in this work to select the

effectual operands. For weights the pre-scheduling can be done

in advance and in software. For activations, it can be done on

the output of the preceding layer. Another hardware scheduler,

identical to the one described in this work pre-schedules the

activations as they are produced at the output of a layer.

ACKNOWLEDGEMENT

This work was supported by the NSERC COHESA Strategic

Research Network and an NSERC Discovery Grant. The

University of Toronto maintains all rights on the technologies

described.

REFERENCES

[1] “Movielens 20m dataset,” https://grouplens.org/datasets/movielens/20m/.

[2] “NVIDIA Tesla V100 GPU Achitecture,” 2017. [Online].
Available: https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf

[3] “Cerebras CS1,” 2019. [Online]. Available: https://www.cerebras.net/
product/

[4] “Gaudi training platform white paper,” 2019. [Online].
Available: https://habana.ai/wp-content/uploads/2019/06/Habana-Gaudi-
Training-Platform-whitepaper.pdf

[5] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. Enright Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network
Computing,” in Intl’ Symp. on Computer Architecture, 2016.

[6] D. Amodei, D. Hernadez, G. Sastry, J. Clark, G. Brockman,
and I. Sutskever, “Open AI Blog.” [Online]. Available: https:
//openai.com/blog/ai-and-compute/

792

[7] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A
large annotated corpus for learning natural language inference,” in
Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing. Lisbon, Portugal: Association for
Computational Linguistics, Sep. 2015, pp. 632–642. [Online]. Available:
https://www.aclweb.org/anthology/D15-1075

[8] J. Burgess, “RTX ON - the NVIDIA TURING GPU,” in 2019

IEEE Hot Chips 31 Symposium (HCS), Cupertino, CA, USA,

August 18-20, 2019, 2019, pp. 1–27. [Online]. Available: https:
//doi.org/10.1109/HOTCHIPS.2019.8875651

[9] Cerebras Systems, “Cerebras Wafer Scale Engine: An Introduc-
tion,” ”https://www.cerebras.net/wp-content/uploads/2019/08/Cerebras-
Wafer-Scale-Engine-An-Introduction.pdf”, 2019.

[10] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in ACM

SIGARCH Computer Architecture News, vol. 44, no. 3. IEEE Press,
2016, pp. 367–379.

[11] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,” IEEE

Journal of Solid-State Circuits, vol. 52, no. 1, Jan 2017.

[12] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “DaDianNao: A Machine-Learning
Supercomputer,” in Intl’ Symp. on Microarchitecture, 2014.

[13] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan,
and K. Gopalakrishnan, “PACT: Parameterized clipping activation for
quantized neural networks,” arXiv preprint arXiv:1805.06085, 2018.

[14] D. Das, N. Mellempudi, D. Mudigere, D. D. Kalamkar, S. Avancha,
K. Banerjee, S. Sridharan, K. Vaidyanathan, B. Kaul, E. Georganas,
A. Heinecke, P. Dubey, J. Corbal, N. Shustrov, R. Dubtsov, E. Fomenko,
and V. O. Pirogov, “Mixed precision training of convolutional neural
networks using integer operations,” in 6th International Conference on

Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30

- May 3, 2018, Conference Track Proceedings, 2018. [Online]. Available:
https://openreview.net/forum?id=H135uzZ0-

[15] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language
modeling with gated convolutional networks,” in Proceedings of the

34th International Conference on Machine Learning - Volume 70,
ser. ICML’17. JMLR.org, 2017, pp. 933–941. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3305381.3305478

[16] C. De Sa, M. Leszczynski, J. Zhang, A. Marzoev, C. R. Aberger,
K. Olukotun, and C. Ré, “High-accuracy low-precision training,” arXiv

preprint arXiv:1803.03383, 2018.

[17] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large
scale distributed deep networks,” in Proceedings of the 25th International

Conference on Neural Information Processing Systems - Volume 1, ser.
NIPS’12. USA: Curran Associates Inc., 2012, pp. 1223–1231. [Online].
Available: http://dl.acm.org/citation.cfm?id=2999134.2999271

[18] A. Delmas Lascorz, P. Judd, D. M. Stuart, Z. Poulos, M. Mahmoud,
S. Sharify, M. Nikolic, K. Siu, and A. Moshovos, “Bit-tactical: A
software/hardware approach to exploiting value and bit sparsity in neural
networks,” in Proceedings of the Twenty-Fourth International Conference

on Architectural Support for Programming Languages and Operating

Systems, ser. ASPLOS ’19. New York, NY, USA: ACM, 2019, pp. 749–
763. [Online]. Available: http://doi.acm.org/10.1145/3297858.3304041

[19] T. Dettmers and L. Zettlemoyer, “Sparse networks from scratch: Faster
training without losing performance,” arXiv preprint arXiv:1907.04840,
2019.

[20] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” CoRR,
vol. abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/
1810.04805

[21] M. Drumond, T. Lin, M. Jaggi, and B. Falsafi, “Training DNNs with
hybrid block floating point,” in Proceedings of the 32Nd International

Conference on Neural Information Processing Systems, ser. NIPS’18.
USA: Curran Associates Inc., 2018, pp. 451–461. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3326943.3326985

[22] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” Arxiv preprint arxiv:1808.05377, 2018.

[23] R. D. Evans, L. F. Liu, and T. Aamodt, “JPEG-ACT: A frequency-
domain lossy DMA engine for training convolutional neural networks,”
in Proceedings of the 47th Annual International Symposium on Computer

Architecture, ser. ISCA ’20. ACM, 2020.

[24] M. Golub, G. Lemieux, and M. Lis, “Dropback: Continuous pruning
during training,” arXiv preprint arXiv:1806.06949, 2018.

[25] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. N. Vijaykumar,
“SparTen: A sparse tensor accelerator for convolutional neural
networks,” in Proceedings of the 52Nd Annual IEEE/ACM International

Symposium on Microarchitecture, ser. MICRO ’52. New York,
NY, USA: ACM, 2019, pp. 151–165. [Online]. Available: http:
//doi.acm.org/10.1145/3352460.3358291

[26] Google, “Using bfloat16 with tensorflow models,” https:
//cloud.google.com/tpu/docs/bfloat16.

[27] U. Gupta, B. Reagen, L. Pentecost, M. Donato, T. Tambe, A. M.
Rush, G. Wei, and D. Brooks, “MASR: A modular accelerator
for sparse rnns,” in 28th International Conference on Parallel

Architectures and Compilation Techniques, PACT 2019, Seattle, WA,

USA, September 23-26, 2019. IEEE, 2019, pp. 1–14. [Online].
Available: https://doi.org/10.1109/PACT.2019.00009

[28] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” in 4th International Conference on Learning Representations,

ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track

Proceedings, Y. Bengio and Y. LeCun, Eds., 2016. [Online]. Available:
http://arxiv.org/abs/1510.00149

[29] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Advances in neural

information processing systems, 2015, pp. 1135–1143.

[30] B. Hassibi and D. G. Stork, “Second order derivatives for
network pruning: Optimal brain surgeon,” in Advances in Neural

Information Processing Systems 5, S. J. Hanson, J. D. Cowan, and
C. L. Giles, Eds. Morgan-Kaufmann, 1993, pp. 164–171. [Online].
Available: http://papers.nips.cc/paper/647-second-order-derivatives-for-
network-pruning-optimal-brain-surgeon.pdf

[31] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in The

IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[33] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua, “Neural
collaborative filtering,” CoRR, vol. abs/1708.05031, 2017. [Online].
Available: http://arxiv.org/abs/1708.05031

[34] K. Hegde, H. A. Moghaddam, M. Pellauer, N. C. Crago, A. Jaleel,
E. Solomonik, J. S. Emer, and C. W. Fletcher, “Extensor: An accelerator
for sparse tensor algebra,” in Proceedings of the 52nd Annual IEEE

/ ACM International Symposium on Microarchitecture, MICRO 2019,

Columbus, OH, USA, October 12-16, 2019. ACM, 2019, pp. 319–333.
[Online]. Available: https://doi.org/10.1145/3352460.3358275

[35] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. W. Fletcher,
“UCNN: Exploiting computational reuse in deep neural networks via
weight repetition,” in Proceedings of the 45th Annual International

Symposium on Computer Architecture, ser. ISCA ’18. Piscataway,
NJ, USA: IEEE Press, 2018, pp. 674–687. [Online]. Available:
https://doi.org/10.1109/ISCA.2018.00062

[36] HewlettPackard, “CACTI,” https://github.com/HewlettPackard/cacti.

[37] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.
[Online]. Available: http://arxiv.org/abs/1602.07360

[38] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko, “Gist:
Efficient data encoding for deep neural network training,” in Proceedings

of the 45th Annual International Symposium on Computer Architecture,
ser. ISCA ’18. Piscataway, NJ, USA: IEEE Press, 2018, pp. 776–789.
[Online]. Available: https://doi.org/10.1109/ISCA.2018.00070

[39] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter

793

performance analysis of a tensor processing unit,” in Proceedings of

the 44th Annual International Symposium on Computer Architecture,
ser. ISCA ’17. New York, NY, USA: ACM, 2017, pp. 1–12. [Online].
Available: http://doi.acm.org/10.1145/3079856.3080246

[40] P. Judd, A. D. Lascorz, S. Sharify, and A. Moshovos, “Cnvlutin2:
Ineffectual-activation-and-weight-free deep neural network computing,”
CoRR, vol. abs/1705.00125, 2017. [Online]. Available: http://arxiv.org/
abs/1705.00125

[41] D. D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee,
S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen,
J. Yang, J. Park, A. Heinecke, E. Georganas, S. Srinivasan, A. Kundu,
M. Smelyanskiy, B. Kaul, and P. Dubey, “A study of BFLOAT16 for
deep learning training,” CoRR, vol. abs/1905.12322, 2019. [Online].
Available: http://arxiv.org/abs/1905.12322

[42] U. Köster, T. J. Webb, X. Wang, M. Nassar, A. K. Bansal, W. H.
Constable, O. H. Elibol, S. Gray, S. Hall, L. Hornof, A. Khosrowshahi,
C. Kloss, R. J. Pai, and N. Rao, “Flexpoint: An adaptive numerical format
for efficient training of deep neural networks,” in Proceedings of the 31st

International Conference on Neural Information Processing Systems, ser.
NIPS’17. USA: Curran Associates Inc., 2017, pp. 1740–1750. [Online].
Available: http://dl.acm.org/citation.cfm?id=3294771.3294937

[43] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in Neural Information Processing Systems 2, D. S. Touretzky,
Ed. Morgan-Kaufmann, 1990, pp. 598–605. [Online]. Available:
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf

[44] Y. Li and A. Pedram, “CATERPILLAR: Coarse grain reconfigurable
architecture for accelerating the training of deep neural networks,” 2017

IEEE 28th International Conference on Application-specific Systems,

Architectures and Processors (ASAP), Jul 2017. [Online]. Available:
http://dx.doi.org/10.1109/ASAP.2017.7995252

[45] H. Liao, J. Tu, J. Xia, and X. Zhou, “DaVinci: A scalable architecture
for neural network computing,” in 2019 IEEE Hot Chips 31 Symposium

(HCS), 2019, pp. 1–44.

[46] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J.
Belongie, “Feature pyramid networks for object detection,” CoRR,
vol. abs/1612.03144, 2016. [Online]. Available: http://arxiv.org/abs/
1612.03144

[47] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,
P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO:
common objects in context,” CoRR, vol. abs/1405.0312, 2014. [Online].
Available: http://arxiv.org/abs/1405.0312

[48] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
“Cambricon: An instruction set architecture for neural networks,” in 2016

IEEE/ACM Intl’ Conf. on Computer Architecture (ISCA), 2016.

[49] M. Mahmoud, I. E. Vivancos, O. Awad, A. H. Zadeh, G. Pekhimenko,
J. Albericio, and A. Moshovos, “Tensordash: Exploiting sparsity to
accelerate deep neural network training and inference,” Arxiv preprint

cs.AR arXiv:2009.00748, Sep. 2020.

[50] R. Mayer and H. Jacobsen, “Scalable deep learning on distributed infras-
tructures: Challenges, techniques and tools,” CoRR, vol. abs/1903.11314,
2019. [Online]. Available: http://arxiv.org/abs/1903.11314

[51] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer
sentinel mixture models,” in 5th International Conference on

Learning Representations, ICLR 2017, Toulon, France, April 24-26,

2017, Conference Track Proceedings, 2017. [Online]. Available:
https://openreview.net/forum?id=Byj72udxe

[52] P. Micikevicius, S. Narang, J. Alben, G. F. Diamos, E. Elsen, D. Garcı́a,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, and H. Wu,
“Mixed precision training,” in 6th International Conference on Learning

Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May

3, 2018, Conference Track Proceedings, 2018. [Online]. Available:
https://openreview.net/forum?id=r1gs9JgRZ

[53] I. Micron Technology, “DDR4 power calculator 4.0,”
https://www.micron.com/∼/media/documents/products/power-
calculator/ddr4 power calc.xlsm.

[54] H. Mostafa and X. Wang, “Parameter efficient training of deep con-
volutional neural networks by dynamic sparse reparameterization,” in
International Conference on Machine Learning, 2019, pp. 4646–4655.

[55] H. Mostafa and X. Wang, “Parameter efficient training of deep con-
volutional neural networks by dynamic sparse reparameterization,” in
International Conference on Machine Learning, 2019, pp. 4646–4655.

[56] NVIDIA, “Training with mixed precision,” https://docs.nvidia.com/
deeplearning/sdk/mixed-precision-training/index.html.

[57] S. Pal, J. Beaumont, D. . H. Park, A. Amarnath, S. Feng, C. Chakrabarti,
H. . S. Kim, D. T. Blaauw, T. N. Mudge, and R. G. Dreslinski,
“Outerspace: An outer product based sparse matrix multiplication
accelerator,” in IEEE International Symposium on High Performance

Computer Architecture, HPCA 2018, Vienna, Austria, February 24-28,

2018. IEEE Computer Society, 2018, pp. 724–736. [Online]. Available:
https://doi.org/10.1109/HPCA.2018.00067

[58] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: an
accelerator for compressed-sparse convolutional neural networks,” in Intl’

Symp. on Computer Architecture, ser. ISCA ’17, 2017.

[59] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable
architecture for parallel patterns,” in 2017 ACM/IEEE 44th Annual

International Symposium on Computer Architecture (ISCA), June 2017,
pp. 389–402.

[60] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. The, B. Kaul,
and T. Krishna, “SIGMA: A sparse and irregular GEMM accelerator
with flexible interconnects for DNN training,” in IEEE International

Symposium on High Performance Computer Architecture, HPCA 2020,

San Diego, CA, USA, February 22-26, 2020. IEEE, 2020, pp. 58–70.
[Online]. Available: https://doi.org/10.1109/HPCA47549.2020.00015

[61] R. Rahman, Intel Xeon Phi Coprocessor Architecture and Tools: The

Guide for Application Developers, 1st ed. Berkely, CA, USA: Apress,
2013.

[62] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon, and S. W.
Keckler, “Compressing DMA engine: Leveraging activation sparsity for
training deep neural networks,” in 2018 IEEE International Symposium

on High Performance Computer Architecture (HPCA). IEEE, 2018, pp.
78–91.

[63] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
“ImageNet Large Scale Visual Recognition Challenge,” CoRR, vol.
abs/1409.0575, Sep. 2014.

[64] F. Schuiki, M. Schaffner, F. K. Gürkaynak, and L. Benini, “A scalable
near-memory architecture for training deep neural networks on large
in-memory datasets,” IEEE Transactions on Computers, vol. 68, no. 4,
pp. 484–497, April 2019.

[65] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[66] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian opti-
mization of machine learning algorithms,” in Proceedings of the 25th

International Conference on Neural Information Processing Systems -

Volume 2, ser. NIPS’12, 2012, p. 2951–2959.

[67] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy
considerations for deep learning in NLP,” CoRR, vol. abs/1906.02243,
2019. [Online]. Available: http://arxiv.org/abs/1906.02243

[68] X. Sun, X. Ren, S. Ma, and H. Wang, “meProp: Sparsified back
propagation for accelerated deep learning with reduced overfitting,” in
Proceedings of the 34th International Conference on Machine Learning

- Volume 70, ser. ICML’17. JMLR.org, 2017, pp. 3299–3308. [Online].
Available: http://dl.acm.org/citation.cfm?id=3305890.3306022

[69] S. Venkataramani, A. Ranjan, S. Banerjee, D. Das, S. Avancha,
A. Jagannathan, A. Durg, D. Nagaraj, B. Kaul, P. Dubey, and
A. Raghunathan, “ScaleDeep: A scalable compute architecture for
learning and evaluating deep networks,” in Proceedings of the 44th

Annual International Symposium on Computer Architecture, ser. ISCA
’17. New York, NY, USA: ACM, 2017, pp. 13–26. [Online]. Available:
http://doi.acm.org/10.1145/3079856.3080244

[70] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and
Tell: Lessons learned from the 2015 MSCOCO image captioning
challenge,” CoRR, vol. abs/1609.06647, 2016. [Online]. Available:
http://arxiv.org/abs/1609.06647

[71] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“GLUE: A multi-task benchmark and analysis platform for natural
language understanding,” 2019, in the Proceedings of ICLR.

[72] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan,
“Training deep neural networks with 8-bit floating point numbers,” in
Proceedings of the 32Nd International Conference on Neural Information

Processing Systems, ser. NIPS’18. USA: Curran Associates Inc., 2018,
pp. 7686–7695. [Online]. Available: http://dl.acm.org/citation.cfm?id=
3327757.3327866

[73] S. Wang and P. Kanwar, “BFloat16: The secret
to high performance on cloud TPUs,” 2019. [Online].

794

Available: https://cloud.google.com/blog/products/ai-machine-learning/
bfloat16-the-secret-to-high-performance-on-cloud-tpus

[74] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “TernGrad:
Ternary gradients to reduce communication in distributed deep learning,”
in Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 1509–1519.
[Online]. Available: http://papers.nips.cc/paper/6749-terngrad-ternary-
gradients-to-reduce-communication-in-distributed-deep-learning.pdf

[75] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019.

[76] A. Yang, “Deep learning training at scale spring crest deep
learning accelerator (intel R© nervanaTM NNP-T),” in 2019 IEEE Hot

Chips 31 Symposium (HCS), Cupertino, CA, USA, August 18-20,

2019, 2019, pp. 1–20. [Online]. Available: https://doi.org/10.1109/
HOTCHIPS.2019.8875643

[77] D. Zhang, J. Yang, D. Ye, and G. Hua, “LQ-Nets: Learned quantization
for highly accurate and compact deep neural networks,” in Proceedings

of the European Conference on Computer Vision (ECCV), 2018, pp.
365–382.

[78] J. Zhang, X. Chen, M. Song, and T. Li, “Eager pruning: Algorithm

and architecture support for fast training of deep neural networks,”
in Proceedings of the 46th International Symposium on Computer

Architecture, ser. ISCA ’19. New York, NY, USA: ACM, 2019, pp. 292–
303. [Online]. Available: http://doi.acm.org/10.1145/3307650.3322263

[79] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo,
T. Chen, and Y. Chen, “Cambricon-X: An accelerator for sparse
neural networks,” in Intl’ Symp. on Microarchitecture, 2016. [Online].
Available: https://doi.org/10.1109/MICRO.2016.7783723

[80] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-X: An accelerator for sparse neural networks,” in
Intl’ Symp. on Microarchitecture, 2016.

[81] B. Zheng, N. Vijaykumar, and G. Pekhimenko, “Echo: Compiler-
based GPU memory footprint reduction for LSTM RNN training,” in
Proceedings of the 47th Annual International Symposium on Computer

Architecture, ser. ISCA ’20. ACM, 2020.

[82] X. Zhou, Z. Du, Q. Guo, C. Liu, C. Wang, X. Zhou, L. Li, T. Chen, and
Y. Chen, “Cambricon-S: addressing irregularity in sparse neural networks
through a cooperative software/hardware approach,” in Intl’ Symp. on

Microarchitecture, 2018.

795

